Abstract: Coagulation is one of the important methods to treat fine particle suspension systems such as slime water. The literature analysis shows that the coagulation process is affected by factors such as hydraulic conditions, suspended particle properties and dosing system. From the perspective analysis of mechanics, these factors can be classified into two aspects : the interaction between particles and the interaction between particles and fluid. The liquid-solid coupling numerical simulation based on these two forces is an intuitive and effective method to analyze the particle aggregation behavior from the mesoscopic scale. In the current mainstream numerical simulation models of liquid-solid coupling condensation process, the CFD-DEM coupling model satisfies most of the simulation studies, and the LBM-DEM is more suitable for dealing with complex flow fields.
刘利波,高 旺,王志强,吉日格勒. 混凝过程颗粒凝聚行为的影响因素及其数值模拟方法[J]. 煤炭与化工, 2023, 46(8): 101-105,109..
Liu Libo, Gao Wang, Wang Zhiqiang, Jirgler. Influencing factors of particle aggregation behavior in coagulation process and its numerical simulation method. CCI, 2023, 46(8): 101-105,109..
[ 1 ] 贾 朋,陈家庆,蔡小垒,等. 炼化污水化学混凝净化处理效果影响的实验研究[ J ]. 工业水处理,2021,41( 1 ): 77 - 82.
[ 2 ] 郑 毅,丁曰堂,李 峰,等. 国内外混凝机理研究及混凝剂的开发现状[ J ]. 中国给水排水,2007( 10 ):14 - 17.
[ 3 ] 刘鹏宇. 饮用水源水中典型POPs有机氯农药的强化去除效能研究[ D ]. 兰州:兰州交通大学,2021
[ 4 ] 周 叶,高 峰,戚雷强. 混凝水处理法应用现状及强化措施探讨[ J ]. 净水技术,2021, 40( S1 ):9 - 14.
[ 5 ] 贺聪慧,王 祺,梁瑞松,等. 磁强化处理技术在城市污水处理中的研究与应用进展[ J ]. 环境科学学报,2021,41( 1 ):54 - 69.
[ 6 ] 张小伟,王文龙,蔡亦忠,等. 臭氧强化混凝对印染废水的深度处理研究[ J ]. 工业水处理,2020,40( 9 ): 30 - 35.
[ 7 ] 梁为民. 凝聚与絮凝[ M ]. 北京:冶金工业出版社,1987.
[ 8 ] 毕传健. 强化混凝技术在集中式印染废水处理厂的应用研究[ D ]. 上海:东华大学,2017.
[ 9 ] 于跃先. 煤泥浮选颗粒间相互作用及对浮选影响研究[ D ]. 北京:中国矿业大学(北京),2018.
[ 10 ] 柳彦俊. 纳米塑料在天然水体中凝聚的影响因素及机制[ D ]. 广州:华南理工大学,2020.
[ 11 ] Potocar T., Pereira J. A. V., Branyikova I., et al. Alkaline floccula-
tion of Microcystis aeruginosa induced by calcium and magnesium precipitates[ J ]. JOURNAL OF APPLIED PHYCOLOGY, 2020, 32( 1 ): 329 - 337.
[ 12 ] Liu X. M., Sheng G. P., Yu H. Q. DLVO approach to the floccula-
bility of a photosynthetic H-2-producing bacterium, Rhodopseud-omonas acidophila[ J ]. ENVIRONMENTAL SCIENCE & TECHN
OLOGY,2007,41( 13 ):4 620 - 4 625.
[ 13 ] Javadian S., Kakemam J. Intermicellar interaction in surfactant s-
olutions; a review study[ J ]. JOURNAL OF MOLECULAR LIQUIDS, 2017,242: 115 - 128.
[ 14 ] Lin Z., Li P. T., Hou D., et al. Aggregation Mechanism of Particles: Effect of Ca2+ and Polyacrylamide on Coagulation and Flocculation of Coal Slime Water Containing Illite[ J ]. Minerals, 2017,7( 2 ):30.
[ 15 ] Nabweteme R., Yoo M., Kwon H.-S., et al. Application of the ext-
ended DLVO approach to mechanistically study the algal flocculation[ J ]. Journal of Industrial and Engineering Chemistry, 2015( 30 ): 289 - 294.
[ 16 ] 邹文杰,曹亦俊,孙春宝,等. 煤泥选择性絮凝浮选中颗粒间相互作用研究[ J ]. 中国矿业大学学报,2015,44( 6 ):1 061 - 1 067.
[ 17 ] 张明青,刘炯天,王永田. 煤变质程度对煤泥水沉降性能的影响[ J ]. 煤炭科学技术,2008( 11 ):102 - 104.
[ 18 ] 梁 龙. 煤泥中粘土矿物的选择性团聚机理研究[ D ]. 徐州:中国矿业大学,2017.
[ 19 ] Chen R. X., Fan Y. P., Dong X. S., et al. Impact of pH on interact-
ion between the polymeric flocculant and ultrafine coal with atomic force microscopy (AFM)[ J ]. Colloids and Surfaces a-Physicoche-
mical and Engineering Aspects,2021,622: 11.
[ 20 ] Li H., Liu M. X., Liu Q. The effect of non-polar oil on fine hemati-
te flocculation and flotation using sodium oleate or hydroxamic acids as a collector[ J ]. Minerals Engineering,2018,119: 105 - 115.
[ 21 ] Lin F., Li J. G., Liu M. R., et al. New insights into the effect of extracellular polymeric substance on the sludge dewaterability based on interaction energy and viscoelastic acoustic response analysis[ J ]. Chemosphere, 2020,26: 1 - 10.
[ 22 ] Yu W. B., Wan Y. L., Wang Y., et al. Enhancing waste activated sludge dewaterability by reducing interaction energy of sludge flocs[ J ]. Environmental Research,2021,196: 1 - 9.
[ 23 ] 郭玲香,欧泽深,胡明星. 煤泥水悬浮液体系中EDLVO理论及应用[ J ]. 中国矿业,1999( 6 ):72 - 75.
[ 24 ] 杨宗义,刘文礼,焦小淼,等. 蒙脱石分散体系中用Zeta电位修正静电作用能的计算[ J ]. 煤炭学报,2017,42( 6 ):1 572 - 1 578.
[ 25 ] 王晓敏,王 亮,李风亭,等. 混凝剂对胶体电动电位的影响研究[ J ]. 工业安全与环保,2006( 2 ):7 - 9.
[ 26 ] 钟赐龙. 微涡流优化及与排泥水回流协同混凝研究[ D ]. 南昌:华东交通大学,2020.
[ 27 ] 卢 芳,李 孟,江以恒,等. 微污染水源水脱氮的强化混凝工艺[ J ]. 环境工程学报,2020,14( 1 ):113 - 122.
[ 28 ] 肖淑敏,赵建海,魏 磊,等. 搅拌条件对氢氧化镁混凝性能及絮体特性的影响[ J ]. 化工进展,2018,37( 2 ):761 - 766.
[ 29 ] 王绍文,姜安玺,孙 喆. 混凝动力学的涡旋理论探讨(下)[ J ]. 中国给水排水,1991( 4 ):8 - 11,12.
[ 30 ] Casson L. W., Lawler D. F. Flocculation in Turbulent Flow: Meas-
urement and Modeling of Particle Size Distributions[ J ]. Journal AWWA, 1990, 82( 8 ): 54 - 68.
[ 31 ] Al-Husseini T. R., Ghawi A. H.,Ali A. H. Performance of hydr-
aulic jump rapid mixing for enhancement of turbidity removal from synthetic wastewater: A comparative study[ J ]. JOURNAL OF WATER PROCESS ENGINEERING,2019, 30:100590.
[ 32 ] Pennock W. H., Weber-Shirk M. L., Lion L. W. A Hydrodynamic and Surface Coverage Model Capable of Predicting Settled Effluent Turbidity Subsequent to Hydraulic Flocculation[ J ]. Environmental Engineering Science, 2018,35(12):1 273 - 1 285.
[ 33 ] Maraschin M., Ferrari K. F. S. H., Silva A. P. H., et al. Aluminum sludge thickening: Novel helical pipes for aggregation by dual flocculation and thickening by filtration applied to water treatment plants[ J ]. Separation and Purification Technology, 2020,241: 1 - 10.
[ 34 ] Carissimi E., Sanagiotto D. G., Schettini E. B. C., et al. Revisiting Coiled Flocculator Performance for Particle Aggregation[ J ]. WATER ENVIRONMENT RESEARCH, 2018,90( 4):322 - 328.
[ 35 ] Carissimi E., Miller J. D., Rubio J. Characterization of the high kinetic energy dissipation of the Flocs Generator Reactor (FGR)[ J ]. International Journal of Mineral Processing, 2007, 85
( 1-3 ): 41 - 49.
[ 36 ] 毛玉红. 流场涡形态对混凝效果的影响研究[ D ]. 兰州:兰州交通大学,2017.
[ 37 ] 甘 恒. 微涡旋对尾矿絮凝沉降的影响探究[ D ]. 南宁:广西大学,2018.
[ 38 ] 林 喆,匡亚莉,王光辉,等. 一种格栅式絮凝沉降装置及其构造方法:CN201711294353.7[ P ].
[ 39 ] 刘嘉恒. 格栅式絮凝器的促凝机制及其结构优化[ D ]. 徐州:中国矿业大学,2021.
[ 40 ] 王志新. 气携式涡流絮凝反应器及其处理页岩气压裂返排液试验研究[ D ]. 徐州:中国矿业大学,2020.
[ 41 ] 童祯恭,钟赐龙,刘卓尧,等. 微涡旋混凝技术在宜春某水厂的应用[ J ]. 水处理技术,2021,47( 3 ):89 - 92,97.
[ 42 ] Tong Z. G. Micro-eddy coagulation mechanism and its application in water purification plants[ J ]. Desalination and Water Treatment, 2018,110: 275 - 282.
[ 43 ] 吴文权,黄远东. 液固两相流中流体旋涡对固体粒子运动影响的数值研究[ J ]. 工程热物理学报,1999( 3 ):365 - 369.
[ 44 ] Tsuji Y., Tanaka T., Ishida T. Lagrangian numerical simulation of plug flow of cohesionless particles in a horizontal pipe[ J ]. Powder Technology, 1992, 7( 3 ): 239 - 250.
[ 45 ] Tsuji Y., Kawaguchi T., Tanaka T. Discrete particle simulation of two-dimensional fluidized bed[ J ]. Powder Technology, 1993, 77( 1 ):79 - 87.
[ 46 ] Liu D. Y., Bu C. S., Chen X. P. Development and test of CFD-D-
EM model for complex geometry: A coupling algorithm for Fluent and DEM[ J ]. COMPUTERS & CHEMICAL ENGINEERING, 2013,58:260 - 268.
[ 47 ] Lin J. J., Luo K., Wang S., et al. An augmented coarse-grained CFD-DEM approach for simulation of fluidized beds[ J ]. Advanced Powder Technology, 2020, 31( 10): 4 420 -
4 427.
[ 48 ] Mema I., Padding J. T. Fluidization of elongated particles-Effect of multi-particle correlations for drag, lift, and torque in CFD-DEM[ J ]. AICHE JOURNAL,2021,67(( 1 ):1 - 11.
[ 49 ] 赵钟杰,张建鹏,唐艳玲,等. 基于CFD-DEM的固液分级过滤模拟[ J ]. 华东理工大学学报:自然科学版,2022,48( 5 ):591 - 599.
[ 50 ] 肖 桐,王千红,沈盈莺,等. 颗粒床内固液过滤的三维CFD-DEM模拟[ J ]. 华东理工大学学报:自然科学版,2020,46( 5 ):164 - 172.
[ 51 ] Pei C., Wu C.-Y. DEM-CFD Modelling of Electrostatic Phenom-
ena in Fluidization[ A ]. X. Li,Y. Feng,G. Mustoe. Proceedings of the 7th International Conference on Discrete Element Methods[ C ]. Singapore: Springer Singapore, 2017: 995 - 1 003.
[ 52 ] Sun H. L., Li D. M., Xu S. L., et al. Modeling the process of cohes-
ive sediment settling and flocculation based on CFD-DEM approach[ J ]. GRANULAR MATTER, 2019, 21( 5 ):1 - 14.
[ 53 ] Sun R., Xiao H., Sun H. L. Investigating the settling dynamics of cohesive silt particles with particle-resolving simulations[ J ]. Advances in Water Resources,2018,111:406 - 422.
[ 54 ] 李潘婷. 煤泥凝聚过程的CFD-DEM耦合模拟研究[ D ]. 徐州:中国矿业大学,2018.
[ 55 ] 周宏宇. 非牛顿流体/牛顿流体驱替过程的格子Boltzmann模拟[ D ]. 大连:大连理工大学,2016.
[ 56 ] Ladd A. J. C., Verberg R. Lattice-Boltzmann Simulations of Parti-
cle-Fluid Suspensions[ J ]. Journal of Statistical Physics, 2001, 104( 5 ):1 191 - 1 251.
[ 57 ] Gabbanelli S., Drazer G., Koplik J. Lattice Boltzmann method for non-Newtonian (power-law) fluids[ J ]. Physical Review E, 2005, 72( 4 ): 1 - 7.
[ 58 ] Zhang H., Trias F. X., Oliva A., et al. PIBM: Particulate immersed boundary method for fluid-particle interaction problems[ J ]. Powder Technology,2015,272:1 - 13.
[ 59 ] 张庆来,李 斌,王雨萌,等. 基于LBM-DEM喷动床内换热特性介尺度数值模拟[ J ]. 煤炭学报,2022,47( S1 ):331 - 339.
[ 60 ] Fan J. H., Luu L. H., Noury G., et al. DEM-LBM numerical mod-
eling of submerged cohesive granular discharges [ J ]. GRANULAR MATTER, 2020, 22( 3 ):1 - 12.
[ 61 ] Wu S. L., Chen Y. L., Zhu Y. Y., et al. Study on filtration process of geotextile with LBM-DEM-DLVO coupling method[ J ]. GEOTEXTILES AND GEOMEMBRANES,2021,49( 1 ): 166 - 179.
[ 62 ] Ding W. T., Xu W. J. Study on the multiphase fluid-solid interact-
ion in granular materials based on an LBM-DEM coupled method[ J ]. POWDER TECHNOLOGY, 2018, 335:301 - 314.
[ 63 ] 李 涛. 崩落法放矿过程中散体矿岩运移规律研究[ D ]. 北京:北京科技大学,2018.
[ 64 ] Zhang H., Tan Y. Q., Shu S., et al. Numerical investigation on the role of discrete element method in combined LBM-IBM-DEM modeling[ J ]. Computers & Fluids, 2014, 94:37 - 48.