物化法处理土霉素废水研究进展
樊明泽,刘晓帅
河北圣雪大成制药有限责任公司,河北 石家庄 051430 )
Research progress on physicochemical treatment of oxytetracycline wastewater
Fan Mingze, Xiaoshuai
Hebei Shengxue Dacheng Pharmaceutical Corporation Ltd., Shijiazhuang 051430, China
摘要 分析了土霉素废水的来源及水质特征,以此为基础对土霉素废水近年来的物理化学处理方法进行了综述,并对其各自优缺点、处理效果进行了概括。探讨了目前处理方法存在的一些问题,同时也对未来土霉素废水处理技术发展及方向进行了展望。
关键词 :
土霉素废水 ,
高级氧化技术 ,
物理方法 ,
研究进展
Abstract : Based on the analysis of the source and water quality of oxytetracycline wastewater, the physicochemical treatment methods of oxytetracycline wastewater in recent years were summarized, and their advantages and disadvantages and treatment effects were summarized. Some problems existing in the present treatment methods are discussed, and the future development and direction of oxytetracycline wastewater treatment technology were also prospected.
Key words :
oxytetracycline wastewater
advanced oxidation technology
physical method
research progress
作者简介 : 樊明泽( 1982— ),男,河北石家庄人,工程师。
[ 1 ] Hanlin Chen,Yen Ping Peng,Ku Fan Chen, et al. Rapid synthesis
of Ti-MCM-41 by microwave-assisted hydrothermal method towards photocatalytic degradation of oxytetracycline[ J ]. Journal of Environmental Sciences, 2016, 44( 6 ): 76 - 87.
[ 2 ] Zeynep Cetecioglu, Bahar Ince, Meritxell Gros, et al. Biodegrada-
tion and reversible inhibitory impact of sulfamethoxazole on the utilization of volatile fatty acids during anaerobic treatment of pharmaceutical industry wastewater[ J ]. Science of the Total Environment, 2015( 536 ): 667 - 674.
[ 3 ] Xueqing Shi, Olivier Lefebvre,Kok Kwang Ng, et al. Sequential a-
naerobic-aerobic treatment of pharmaceutical wastewater with high salinity[ J ]. Bioresource Technology, 2014( 153 ): 79 - 86.
[ 4 ] Shuai Wu, Jingmiao Zhang, Ao Xia, et al. Microalgae cultivation f-
or antibiotic oxytetracycline wastewater treatment[ J ]. Environme-
ntal Research, 2022( 214 ): 113 - 850.
[ 5 ] Feilong Zhang, Qinyan Yue, Yuan Gao, et al. Application for oxyt-
etracycline wastewater pretreatment by Fenton iron mud based cathodic-anodic-electrolysis ceramic granular fillers - ScienceDi-
rect[ J ]. Chemosphere, 2017( 123 ): 115 - 123.
[ 6 ] Sergio Santaeufemia, Enrique Torres, Roi Mera, et al. Bioremedia-
tion of oxytetracycline in seawater by living and dead biomass of the microalga Phaeodactylum tricornutum[ J ]. Journal of Hazardo-
us Materials, 2016( 320 ): 315 - 325.
[ 7 ] Yupeng He, Zhe Tian, Qizhen Yi, et al. Impact of oxytetracycline on anaerobic wastewater treatment and mitigation using enhanced hydrolysis pretreatment[ J ]. Water Research, 2020, 187( 5 ): 116 - 408.
[ 8 ] 刘江国,李杰霞,陈玉成,等. 改性玉米秸秆对土霉素的吸附研究[ J ]. 三峡环境与生态,2009,2( 6 ):28 - 30,34.
[ 9 ] 余 剑,丁 恒,张智霖,等. 改性菱角壳生物炭吸附水中土霉素性能与机理[ J ]. 中国环境科学,2021,41( 12 ):5 688 - 5 700.
[ 10 ] 汪 晶,薛祯祯,陈 飞,等. 树脂吸附法回收母液中土霉素的实验研究[ J ]. 环境科学与技术,2008,( 10 ):26 - 28.
[ 11 ] Gülsah Baskan, ünsal Ac1kel, Menderes Levent. Investigation of adsorption properties of oxytetracycline hydrochloride on magnetic zeolite/Fe3O4 particles[ J ]. Advanced Powder Technology, 2022, 33( 6 ): 103 - 600.
[ 12 ] 高 菀. ZIF-8/PSF/TPU膜光催化降解废水中土霉素的研究[ D ]. 广东工业大学,2023.
[ 13 ] 孙贤风,宋志文,姜 蔚. 高浓度土霉素废水预处理工艺的试验研究[ J ]. 四川环境,2005,( 6 ):8 - 9.
[ 14 ] Sammani Ramanayaka, Binoy Sarkar, Asitha T. Cooray, et al. Hal-
loysite nanoclay supported adsorptive removal of oxytetracycline antibiotic from aqueous media[ J ]. Journal of Hazardous Materials, 2020( 384 ): 121 - 301.
[ 15 ] Wan Aisyah Fadilah Wae Abdulkadir, Abdul Latif Ahmad, Ooi B-
oon Seng. A water-repellent PVDF-HNT membrane for high and low concentrations of oxytetracycline treatment via DCMD: An experimental investigation[ J ]. Chemical Engineering Journal, 2021( 422 ): 129 - 644.
[ 16 ] Wan Aisyah Fadilah {Wae AbdulKadir}, Abdul Latif Ahmad, Boon Seng Ooi. Hydrophobic PVDF-HNT membrane for oxytetracycline removal via DCMD: The influence of fabrication parameters on permeability, selectivity and antifouling properties[ J ]. Journal of Water Process Engineering, 2022( 49 ): 102 - 960.
[ 17 ] Jiaxin Guo, Luca Fortunato, Bhaskar Jyoti Deka, et al. Elucidating the fouling mechanism in pharmaceutical wastewater treatment by membrane distillation[ J ]. Desalination, 2020( 475 ): 114 - 148.
[ 18 ] 李再兴,左剑恶,剧盼盼,等. Fenton氧化法深度处理抗生素废水二级出水[ J ]. 环境工程学报,2013,7( 1 ):132 - 136.
[ 19 ] Jian Feng, Mengmeng Cao, Li Wang, et al. Ultra-thin DyFeO3/g-
C3N4 p-n heterojunctions for highly efficient photo-Fenton removal of oxytetracycline and antibacterial activity[ J ]. Journal of Alloys and Compounds, 2023( 939 ): 168 - 789.
[ 20 ] Lele Cui, Mingming Sun, Zhenghua Zhang. Flow-through integra-
tion of FeOCl/graphite felt-based heterogeneous electro-Fenton and Ti4O7-based anodic oxidation for efficient contaminant degradation[ J ]. Chemical Engineering Journal, 2022( 450 ): 138 - 263.
[ 21 ] Miaomiao Liu, Yu Zhang, Hong Zhang, et al. Ozonation as an effe-
ctive pretreatment for reducing antibiotic resistance selection potency in oxytetracycline production wastewater[ J ]. Desalination and Water Treatment, 2017( 74 ): 155 - 162.
[ 22 ] Lan Tang, Jiamei Huang, Chuanyan Zhuang, et al. Micronano-bu-
bble ozonation as an efficient pretreatment technology for raw oxytetracycline production wastewater discharged to biological treatment[ J ]. Chemical Engineering Journal, 2023( 476 ): 146 - 518.
[ 23 ] 王春平,刘清福,马子川. 催化臭氧氧化法降解土霉素废水[ J ]. 工业水处理,2005,( 4 ):56 - 58.
[ 24 ] Lei Wang, Jafar Ali, Zhibin Wang, et al. Oxygen nanobubbles en-
hanced photodegradation of oxytetracycline under visible light: Synergistic effect and mechanism[ J ]. Chemical Engineering Journal, 2020( 388 ): 124 - 227.
[ 25 ] 韩 爽,肖鹏飞. 过硫酸盐活化技术在四环素类抗生素降解中的应用进展[ J ]. 环境化学,2021,40( 9 ):2 873 - 2 883.
[ 26 ] Vladimir Stankov, Mirjana Novak Stankov, Matija Cvetni?, et al. Environmental aspects of UV-C-based processes for the treatment of oxytetracycline in water[ J ]. Environmental Pollution, 2021( 277 ): 116 - 797.
[ 27 ] Haonan Zhang, Qing Cao, Kaipeng Zhang, et al. Boron-doped bio-
char-nano loaded zero-valent iron to activate persulfate for the degradation of oxytetracycline[ J ]. Journal of Environmental Chemical Engineering, 2023, 11( 6 ): 111 - 502.
[ 28 ] 姜国平,赵俊娜,李贵霞,等. 土霉素废水处理技术研究进展[ J ]. 煤炭与化工,2014,37( 4 ):143 - 146.
[ 29 ] Yiqing Liu, Xuexiang He, Xiaodi Duan, et al. Photochemical degr-
adation of oxytetracycline: Influence of pH and role of carbonat-eradical[ J ]. Chemical Engineering Journal, 2015(276): 113 - 121.
[ 30 ] Huifang Zhang, Ying Wang, Chunyang Zhai. Construction of a novel p-n heterojunction CdS QDs/LaMnO3 composite for photodegradation of oxytetracycline[ J ]. Materials Science in Semiconductor Processing, 2022( 144 ): 106 - 568.
[ 31 ] 黄丽萍,陈东辉,黄满红,等. 铁碘共掺杂纳米TiO2光催化降解水中土霉素的研究[ J ]. 水处理技术, 2011, 37( 5 ):77 - 80.
[ 32 ] 胡继康,汪 恂,舒晓春,等. TiO2-Fe2O3复合光催化剂降解废水中土霉素研究[ J ]. 环境科学与技术, 2019, 42( 12 ):149 - 155.
[ 33 ] Runhua CHEN, Liyuan CHAI,Yunyan WANG, et al. Degrad-
ation of organic wastewater containing Cu-EDTA by Fe-C mi-
cro-electrolysis[ J ]. Transactions of Nonferrous Metals Society of China, 2012, 22( 4 ): 983 - 990.
[ 34 ] Feilong Zhang, Qinyan Yue, Yuan Gao, et al. Application for oxytetracycline wastewater pretreatment by Fe-C-Ni catalytic cathodic-anodic-electrolysis granular fillers from rare-earth tailings[ J ]. Ecotoxicology and Environmental Safety, 2018( 164 ): 641 - 647.
[ 35 ] 朱新锋,张乐观. 铁炭微电解-Fenton-生物接触氧化法处理土霉素废水[ J ]. 水处理技术, 2010, 36( 2 ):109 - 111.
[ 36 ] 李水秋. 铁碳微电解技术处理难降解废水的研究进展[ J ]. 广东化工, 2017, 44( 12 ):204 - 205, 194.
[ 37 ] Shannon M. Mitchell, Jeffrey L. Ullman, Amy L. Teel, et al. pH and temperature effects on the hydrolysis of three β-lactam antibiotics: Ampicillin, cefalotin and cefoxitin[ J ]. Science of the Total Environment, 2014( 466 ): 547 - 555.
[ 38 ] Qizhen Yi, Yu Zhang, Yingxin Gao, et al. Anaerobic treatment of antibiotic production wastewater pretreated with enhanced hydrolysis: Simultaneous reduction of COD and ARGs[ J ]. Water Research, 2017(110 ): 211 - 217.
[ 39 ] 宋旺旺,冀 东,武旭阳,等. 电子束辐照降解土霉素制药废水COD技术研究[ J ]. 工业水处理, 2021, 41( 2 ):80 - 83.
[ 40 ] 熊 强,冀 东,刘迎云,等. 响应面法优化电子束辐照降解土霉素制药废水中COD的研究[ J ]. 工业用水与废水, 2021, 52( 1 ):22 - 26.
[1]
马 啸1,卫琛浩1,景欣瑞1,党文龙1,王 佳2,李茂庆1. 矿井瓦斯传感器研究现状及发展趋势 [J]. 煤炭与化工, 2023, 46(3): 99-102,105..
[2]
焦其帅,陈玉红,黄永茂. 几种无机纳米纤维材料的研究进展 [J]. 煤炭与化工, 2021, 44(8): 120-122,131..
[3]
焦其帅. 沉淀硫酸钡颗粒微观形貌研究进展 [J]. 煤炭与化工, 2021, 44(4): 138-141.
[4]
邓凯顺. 臭氧氧化技术在废水处理中应用研究 [J]. 煤炭与化工, 2017, 40(8): 156-160.
[5]
王贺飞1,2,李贵霞1,2,钟为章1,2,张 涛1,2,李再兴1,2. 基于厌氧消化的剩余污泥细胞破壁预处理技术研究进展 [J]. 煤炭与化工, 2017, 40(5): 17-21.
[6]
张智理,刘艳芳,牛建瑞,李再兴. 高级氧化技术处理抗生素废水研究进展 [J]. 煤炭与化工, 2017, 40(1): 37-39,151.
[7]
石晓林,李东风. 低温甲醇洗技术净化工艺及研究进展 [J]. 煤炭与化工, 2016, 39(11): 21-25.
[8]
韩继红,刘勇钢,姚东云,张 静,安 静. 中药口服制剂质量评价研究进展 [J]. 煤炭与化工, 2015, 38(1): 37-40.
[9]
冯远建,李子龙. 矿山采空区稳定性分析及安全治理方法研究 [J]. 煤炭与化工, 2014, 37(6): 28-30.
[10]
姜国平,赵俊娜,李贵霞,杨 岚,高 湘,耿晓玲,李再兴. 土霉素废水处理技术研究进展 [J]. 煤炭与化工, 2014, 37(4): 143-146.
[11]
宋宇涵. 纳米氧化锌的制备方法及其光催化性能 [J]. 煤炭与化工, 2014, 37(11): 13-16.
[12]
郧海丽,刘树彬,于宏伟,张雪红. 食用植物油的抗氧化研究进展 [J]. 煤炭与化工, 2013, 36(4): 31-34.