基于MEMS技术的甲烷催化燃烧传感器研究进展
刘 妮,舒 震,隋 然,王 涛,曹振芳
中国船舶集团有限公司第七一八研究所,河北 邯郸 056027
Research progress of methane catalytic combustion sensor based on MEMS technology
Liu Ni, Shu Zhen, Sui Ran, Wang Tao, Cao Zhen fang
The 718th Research Institute of China Shipbuilding Industry Corporation, Handan 056027, China
摘要 催化燃烧式甲烷传感器是目前煤矿中使用最普遍的传感器。催化燃烧式气体传感器制作技术简单,成本低廉,对甲烷气体的检测有较高的准确度和灵敏度,但目前传统的催化燃烧式气体传感器一般由手工制作而成,具有配对难、一致性差、功耗高等缺点。随着智能物联网和硅体微加工技术的发展,微电子机械系统(MEMS)技术日益成熟,与传统传感器相比,它具有体积小、重量轻、成本低、功耗低、稳定性好和易于实现自动化批量生产等优点。许多研究学者开始研发和设计基于MEMS技术的可燃气体催化燃烧式传感器,并在传感器微结构体制作工艺与材料方面取得突破。
关键词 :
MEMS ,
催化燃烧 ,
传感器 ,
甲烷 ,
可燃气体传感器 ,
载体催化元件
Abstract : Catalytic combustion methane sensor is the most widely used sensor in coal mines. The catalytic combustion gas sensor has the advantages of simple manufacturing technology, low cost, and high accuracy and sensitivity for the detection of methane gas. However, the traditional catalytic combustion gas sensor is made by hand, resulting in difficult matching, poor consistency and high power consumption. With the development of intelligent internet of things and silicon micromachining technology,microelectromechanical system (MEMS) has becomes more mature. Compared with traditional sensors, it has the characteristics of small volume, light weight, low cost, low power consumption, good stability and automatic mass production. Many researchers began to develop and design combustible gas catalytic combustion sensor based on MEMS technology, and have made progress in the fabrication process and materials of sensor microstructure.
Key words :
MEMS
catalytic combustion
sensor
methane
combustible gas sensor
carrier catalysis element
作者简介 : 刘 妮( 1990— ),女,河北邯郸人,工程师。
1 ] 张轶群,于英硕,孙鉴波,等. 催化燃烧式甲烷传感器的催化剂担载方法和可靠性初探[ J ]. 计测技术,2010,30:124 - 126.
[ 2 ] 张光建,王立杰,汪文生. 矿井自然灾害隐患识别决策支持系统模型研究[ J ]. 中国煤炭,2005,31( 2 ):57 - 60.
[ 3 ] 陈俊英,林 辉. 甲烷检测技术的研究现状 [ J ]. 现代仪器,2007( 5 ):1 - 3.
[ 4 ] Ivanovskaya M, Kotsikau D, Faglia G, et al. Gas-sensitive propert-
ies of thin film heterojunction structures based on Fe2O3-In2O3 nanocompo-sites[ J ]. Sensors and Actuators B: Chemical, 2003, 93(1 - 3): 422 - 430.
[ 5 ] 李文江,胡 洋,李 涛. 基于红外技术的甲烷检测系统设计[ J ]. 煤矿安全,2008( 11 ):63 - 66.
[ 6 ] Gao T, Wang T H. Synthesis and properties of multipod-shaped ZnO nanorods for gas-sensor applications [ J ]. Applied Physics A, 2005, 80( 7 ): 1 451 - 1 454.
[ 7 ] 丁黎明,赵景波. 催化燃烧型甲烷传感器的研究[ J ]. 微计算机信息,2007( 1 ):177 - 178.
[ 8 ] 李 珂,于世洁,尤政等. 基于MEMS技术的气体传感器 [ J ]. 传感器与微系统,2008,27( 11 ):5 - 7.
[ 9 ] 王淑华. MEMS传感器现状及应用[ J ]. 微纳电子技术,2011,48( 8 ):516 - 522.
[ 10 ] 马 丽,宋宏斌,王 磊,等. 基于MEMS技术的催化燃烧气体传感器[ J ]. 现代信息科技,2018,2( 10 ):179 - 181.
[ 11 ] Chen Q, Dong H, Xia S. A novel micro-pellistor based on nanopo-
rous alumina beam support [ J ]. Journal of Electronics (China), 2012, 29( 5 ): 469 - 472.
[ 12 ] Miklós A, Hess P, Bozóki Z. Application of acoustic resonators in photoacoustic trace gas analysis and metrology [ J ]. Review of scientific instruments, 2001, 72( 4 ): 1 937 - 1 955.
[ 13 ] Brauns E, Morsbach E, Kunz S, et al. Temperature modulation of a catalytic gas sensor [ J ]. Sensors, 2014, 14( 11 ): 20 372 - 20 381.
[ 14 ] 谷俊涛,张永德,姜金刚,等. 三明治双桥微结构催化燃烧式气体传感器的设计与实现[ J ]. 仪器仪表学报,2014,35( 2 ):350 - 369.
[ 15 ] Lee E B, Hwang I S, Cha J H, et al. Micromachined catalytic com-
bustible hydrogen gas sensor [ J ]. Sensors and Actuators B: Chemical, 2011, 153( 2 ): 392 - 397.
[ 16 ] Suehle J S, Cavicchi R E, Gaitan M, et al. Tin oxide gas sensor fa-
bricated using CMOS micro-hotplates and in-situ processing [ J ]. IEEE Electron Device Letters, 1993, 14( 3 ): 118 - 120.
[ 17 ] 余 隽,唐祯安,陈正豪,等. 基于硅微加工工艺的微热板传热分析[ J ]. 半导体学报,2005,26( 1 ):192 - 196.
[ 18 ] 刘丽丽,王连元,郭 欣,等. 微气体传感器微热板电极结构的设计与优化[ J ]. 电子元件与材料,2014,33( 9 ):50 - 53.
[ 19 ] Lee S M, Dyer D C, Gardner J W. Design and optimisation of a high-temperature silicon micro-hotplate for nanoporouspalladium pellistors[ J ]. Microelectronics Journal, 2003, 34( 2 ): 115 - 126.
[ 20 ] Nagai D, Nishibori M, Itoh T, et al. Ppm level methane detection using micro-thermoelectric gas sensors with Pd/Al2O3 combustion catalyst films [ J ]. Sensors and Actuators B: Chemical, 2015, 206: 488 - 494.
[ 21 ] Li Z, Li J, Wu X, et al. Methane sensor based on nanocomposite of palladium/multi-walled carbon nanotubes grafted with 1, 6-hexanediamine [ J ]. Sensors and Actuators B: chemical, 2009, 139( 2 ): 453 - 459.
[ 22 ] Kamijo T, Suzuki Y, Kasagi N, et al. High-temperature micro catalytic combustor with Pd/nano-porous alumina [ J ]. Proceedings of the Combustion Institute, 2009, 32( 2 ): 3 019 - 3 026.
[ 23 ] Roth D, Gélin P, Primet M, et al. Catalytic behaviour of Cl-free and Cl-containing Pd/Al2O3 catalysts in the total oxidation of methane at low temperature[ J ]. Applied Catalysis A: General, 2000, 203( 1 ): 37 - 45.
[ 24 ] Pieck C L, Vera C R, Peirotti E M, et al. Effect of water vapor on the activity of Pt-Pd/Al2O3 catalysts for methane combustion[ J ]. Applied Catalysis A: General, 2002, 226(1 - 2): 281 - 291.
[1]
赵双斌. 煤矿机电硐室温度监测与预警功能实现 [J]. 煤炭与化工, 2022, 45(7): 86-88.
[2]
吴梦雨. 智能化矸石充填系统的研究与应用 [J]. 煤炭与化工, 2022, 45(6): 92-95.
[3]
崔晓荣,李 晓. 提高光干涉式甲烷测定器维修率的应用研究 [J]. 煤炭与化工, 2022, 45(5): 137-139.
[4]
贺瑞峰,王建盛. 皮带运输机PLC智能控制系统设计 [J]. 煤炭与化工, 2022, 45(2): 87-89.
[5]
耿琳柯,段 硕. 含水页岩甲烷吸附研究进展 [J]. 煤炭与化工, 2022, 45(1): 135-140,143..
[6]
贾金旺,刘 锋. KJ654机车轨道运输监控系统在东庞矿的研究与应用 [J]. 煤炭与化工, 2021, 44(9): 66-70..
[7]
李泽芳1,2,3. 矿用传感器技术发展现状与展望 [J]. 煤炭与化工, 2021, 44(8): 74-76.
[8]
张晓岚. 基于DSP的矿井采煤机状态监测及故障诊断系统设计 [J]. 煤炭与化工, 2021, 44(5): 69-72.
[9]
冯 宁. 煤矿液压支架电液控制系统研究与设计 [J]. 煤炭与化工, 2021, 44(3): 69-70,73.
[10]
邸亚静,李子斌,付玉凤,柳 慧,冯 成,王荣耕. 消毒剂喷雾装置的应用 [J]. 煤炭与化工, 2021, 44(2): 124-126.
[11]
王文鑫,姚 璐,胥 钧. 基于MEMS加速度传感器MPU-6050的滑坡检测系统设计 [J]. 煤炭与化工, 2021, 44(2): 156-160.
[12]
李计川,张自雷. 基于分布式光纤传感技术的煤矿电缆温度监测综述 [J]. 煤炭与化工, 2021, 44(10): 90-92.
[13]
徐飞龙. 煤矿机电设备监测中光纤传感器的应用 [J]. 煤炭与化工, 2021, 44(10): 101-103,106..
[14]
裴雷雷. 激光甲烷传感器在矿井生产过程中的应用研究 [J]. 煤炭与化工, 2020, 43(7): 91-92,95.
[15]
张海庆. 矿用数字式水位传感器设计 [J]. 煤炭与化工, 2020, 43(2): 87-89.