含水页岩甲烷吸附研究进展
耿琳柯,段 硕
河北工程大学 矿业与测绘工程学院,河北 邯郸 056038
Research progress of methane adsorption on water-bearing shale
Geng Linke, Duan Shuo
School of Mining and Geomatics, Hebei University of Engineering, Handan 056038, China
摘要 为了分析含水量对页岩吸附性能的影响,在其它研究的基础上,探讨含水量对页岩甲烷吸附性能以及页岩孔隙的影响,介绍了考虑含水因素的6种吸附模型及适用条件,阐述含水页岩甲烷吸附的研究现状并指出研究的重点与难点,进一步对含水页岩甲烷吸附的发展趋势进行探讨。通过总结分析发现水不仅降低页岩的CH4最大饱和吸附量及等量吸附热,同时也使页岩内部CH4分子的吸附和扩散速率下降,含水页岩的CH4吸附/解吸滞后效应更为显著,水作用后页岩的比表面积和平均孔径以及微孔面积均出现增大的现象。
关键词 :
页岩吸附 ,
含水率 ,
甲烷 ,
吸附机理 ,
吸附模型
Abstract :In order to analysis the influence of water on adsorption of CH4 on shale. Based on related and currently available literature, the present study investigates the effect of water content on adsorption behavior of CH4 and pores of shale, six adsorption models considering water content and their applicable conditions were introduced. The research status of methane adsorption on water-bearing shale and the emphases and difficulties of the research are provied, and further development trend of methane adsorption in water-bearing shale are discussesed. The results show that water in shale not only reduces the maximum saturated adsorption capacity and isosteric heat of adsorption for CH4, but also decreases the adsorption and diffusion rate of CH4 molecules in shale. And the effect of water on adsorption/ desorption hysteresis of CH4 on shale is more obvious. The specific surface area, average pore size and micropore area of shale increased after water treatment.
Key words :
shale adsorption
moisture content
methane
adsorption mechanism
adsorption model
基金资助: 河北省自然科学基金(E2020402072);激光与物质相互作用国家重点实验室开放基金(SKLLIM1813);邯郸市科技项目
(19422091008-31)
作者简介 : 耿琳柯( 1997— ),女,河北邢台人,在校硕士研究生。
1 ] 王 璐. 饱和—非饱和页岩甲烷吸附特征研究[ D ]. 北京:中
国地质大学,2018.
[ 2 ] 罗翠娟. 含气页岩原生水分布特征及其对CH4吸附/解吸影
响研究[ D ]. 昆明:昆明理工大学,2020.
[ 3 ] 邱 振,邹才能. 非常规油气沉积学:内涵与展望[ J ]. 沉积学报,2020,38( 1 ):1 - 29.
[ 4 ] Tianyi Zhao, Xiangfang Li, Zhengfu Ning, et al. Molecular simula-
tion of methane adsorption on type II kerogen with the impact of water content[ J ]. Journal of Petroleum Science and Engineering, 2018, 161: 302 - 310.
[ 5 ] Tianyu Wang, Shouceng Tian, Gensheng Li, et al. Experimental s-
tudy of water vapor adsorption behaviors on shale[ J ]. Fuel, 2019, 248: 168 - 177.
[ 6 ] Jing Li, Xiangfang Li, Keliu Wu, et al. Thickness and stability of water film confined inside nanoslits and nanocapillaries of shale and clay[ J ]. International Journal of Coal Geology, 2017, 179: 253 - 268.
[ 7 ] 贺晓飞,鲁家国,叶 链,等. 含水页岩吸附甲烷实验研究进展[ J ]. 中国石油和化工标准与质量,2017,37( 2 ):29 - 30.
[ 8 ] 王 星,田 辉. 页岩中多元气体竞争吸附特征研究现状及展望[ J ]. 地球化学,2018,47( 3 ):229 - 239.
[ 9 ] 杨 峰,宁正福,刘慧卿,等. 页岩对甲烷的等温吸附特性研究[ J ]. 特种油气藏,2013,20( 5 ):133 - 136,158.
[ 10 ] Jie Zou, Reza Rezaee, Quan Xie, et al. Investigation of moisture effect on methane adsorption capacity of shale samples[ J ]. Fuel,2018, 323 - 332.
[ 11 ] 张宇琪. 含水对页岩气吸附的影响研究[ D ]. 北京:中国石油
大学,2017.
[ 12 ] Lu Wang, Jiamin Wan, Tetsu K Tokunaga, et al. Experimental and Modeling Study of Methane adsorption onto Partially Saturated Shales[ J ]. Water Resources Research, 2018, 54( 7 ): 5 017 - 5 029.
[ 13 ] 陈力博. 外来水对页岩气多组分吸附特征的影响研究[ D ]. 西安:西安石油大学,2019.
[ 14 ] Li Jianhua, Li Bobo, Gao Zheng, et al. Adsorption behavior, inclu-
ding the thermodynamic characteristics of wet shales under different temperatures and pressures[ J ]. Chemical Engineering Science, 2020, 116 228.
[ 15 ] Wenxi Ren, Jianchun Guo, Fanhui Zeng, et al. Modeling of High-
Pressure Methane Adsorption on Wet Shales[ J ]. Energy & Fuels, 2019, 33( 8 ): 7 043 - 7 051.
[ 16 ] 李 恬. 页岩含水率对甲烷吸附的影响研究[ D ]. 中国地质大学(北京),2019.
[ 17 ] 齐荣荣,宁正福,王 庆,等. 考虑水蒸气压力的平衡水页岩等温吸附[ J ]. 中国科学:技术科学,2018,48( 5 ):524 - 536.
[ 18 ] Keith Mosher, Jiajun He, Yangyang Liu, et al. Molecular simulat-
ion of methane adsorption in micro and mesoporous carbons with applications to coal and gas shale systems[ J ]. International Journal of Coal Geology, 2013, 109 - 110.
[1]
贺庆丰1,孙利辉1,2,宋家乐1,丁 斌1,王宗泽1. 不同含水率下弱胶结岩石力学特性研究 [J]. 煤炭与化工, 2022, 45(5): 10-12,17..
[2]
崔晓荣,李 晓. 提高光干涉式甲烷测定器维修率的应用研究 [J]. 煤炭与化工, 2022, 45(5): 137-139.
[3]
裴雷雷. 激光甲烷传感器在矿井生产过程中的应用研究 [J]. 煤炭与化工, 2020, 43(7): 91-92,95.
[4]
孙美婷,姜鹏鹏,梁丙辰,王宇栋. 7-氨基-3-甲氧基甲基-3-头孢烯-4-甲酸的合成 [J]. 煤炭与化工, 2019, 42(11): 126-131,160.
[5]
贺 娜1,邵效云2. 煤制甲醇合成气中提取LNG技术及经济性分析 [J]. 煤炭与化工, 2018, 41(5): 136-138.
[6]
岳利娇1,2,3. 色谱法在测定煤层气甲烷不确定度评定中的应用 [J]. 煤炭与化工, 2017, 40(9): 16-18,31.
[7]
肖 正1, 2,朱 菁1, 2 . 含氧LNG气相组分变化规律研究 [J]. 煤炭与化工, 2017, 40(9): 19-23,74.
[8]
袁 征. 甲烷深冷分离工艺在煤化工中的应用 [J]. 煤炭与化工, 2017, 40(8): 152-153,160.
[9]
徐丕峰. 深孔高压注水在工作面防尘中的应用研究 [J]. 煤炭与化工, 2017, 40(4): 148-150,157.
[10]
张俊卿. 一种矿用甲烷传感器井下自动标校装置 [J]. 煤炭与化工, 2016, 39(8): 105-107,111.
[11]
邓永斌. 煤制天然气甲烷化装置开车时间分析及优化 [J]. 煤炭与化工, 2014, 37(9): 110-113.
[12]
宋 玉. 光干涉式甲烷测定器试验故障排除 [J]. 煤炭与化工, 2014, 37(2): 137-138.
[13]
宋 玉. 光干涉式甲烷测定器干涉条纹不清晰原因分析 [J]. 煤炭与化工, 2014, 37(1): 151-152.