厌氧氨氧化耦合反硝化技术反应机理及其影响因素研究进展
王振毅,李欣宇,赵大密,廉 静
河北科技大学 环境科学与工程学院, 河北省污染防治生物技术实验室,河北 石家庄 050018
Research progress on reaction mechanism and influencing factors of anaerobic ammonium oxidation coupled denitrification technology
Wang Zhenyi, Li Xinyu, Zhao Dami, Lian Jing
School of Environmental Science and Engineering, Hebei University of Science and Technology, Pollution Prevention Biotechnology Laboratory of Hebei Province, Shijiazhuang 050018, China
摘要 为推动厌氧氨氧化(ANAMMOX)耦合反硝化技术在工业上的广泛应用,通过研究和文献分析,在对ANAMMOX耦合反硝化技术反应机理进行阐述的基础上,深入分析了温度、pH值、DO等环境因素以及有机物种类和浓度、碳氮比及基质比等底物因素对ANAMMOX耦合反硝化技术的影响。分析表明,厌氧氨氧化菌和反硝化菌的菌群所需环境条件相似,这为ANAMMOX与反硝化的耦合提供了环境基础。厌氧氨氧化菌和反硝化菌在底物因素上的差异,成为影响ANAMMOX耦合反硝化技术稳定运行的关键。今后需进一步探究底物因素对ANAMMOX耦合反硝化技术的影响。
关键词 :
厌氧氨氧化 ,
反硝化 ,
脱氮除碳 ,
反应机理 ,
影响因素
Abstract :In order to promote the wide application of anaerobic ammonia oxidation (ANAMMOX) coupled denitrificat-
ion technology in industry, through research and literature analysis, on the basis of elaboration of the reaction mechanism of ANAMMOX coupled denitrification technology, the influences of environmental factors such as temperature, pH value and DO, as well as substrate factors such as type and concentration of organic matter, C/N ratio and substrate ratio on ANAMMOX coupled denitrification technology were deeply analyzed. The analysis shows that the environmental conditions required for anammox bacteria and denitrifying bacteria are similar, which provides an environmental basis for the coupling of ANAMMOX and denitrification. The difference of substrate factors between anammox bacteria and denitrifying bacteria is the key to the stable operation of ANAMMOX coupled denitrification technology. The influence of substrate factors on ANAMMOX coupled denitrification technology should be further explored in the future.
Key words :
ANAMMOX
denitrification
nitrogen and carbon removal
reaction mechanism
influence factor
基金资助: 国家自然科学基金资助项目(51678387);河北省高等学校科学技术研究重点基金项目(ZD2019038);河北省高等学校科学
技术研究青年基金项目(QN2018062);河北省人才工程资助项目(A201902019)
作者简介 : 王振毅( 1995— ),男,河南南阳人,硕士研究生。
1 ] 李天育,陈钰琦,张 静,等. 含氮废水的处理方法研究[ J ]. 广东化工,2020,47( 24 ):82 - 83.
[ 2 ] 夏 凡,任龙飞. 新型厌氧氨氧化工艺在高含氮废水处理中的应用[ J ]. 水处理技术,2020,46( 9 ):19 - 23.
[ 3 ] 樊佳炜,武海霞,陈卫刚. 氨氮废水的高级氧化处理技术研究进展[ J ]. 南京工业大学学报(自然科学版),2020,42( 2 ):142 - 151.
[ 4 ] 陶美霞,陈 明,胡兰文,等. 生物技术在处理氨氮废水中
的研究进展[ J ]. 现代化工,2018,38( 12 ):24 - 28.
[ 5 ] 李 丹,沈存花,刘佛财,等. 低浓度氨氮废水处理技术研究进展[ J ]. 应用化工,2018,47( 6 ):1 274 - 1 280.
[ 6 ] Strous M, Pelletier E, Mangenot S, et al. Deciphering the evolution and metabolism of an anammox bacterium from a community genome[ J ]. Nature, 2006, 440 (7 085): 790 - 794.
[ 7 ] Jetten M S M, Horn S J, Van Loosdrecht M C M. Towards a more sustainable municipal wastewater treatment system[ J ]. Water Science & Technology, 1997, 35 ( 9 ): 171 - 180.
[ 8 ] 赵志宏,廖德祥,李小明,等. 厌氧氨氧化微生物颗粒化及其脱氮性能的研究[ J ]. 环境科学,2007,28( 4 ):801 - 804.
[ 9 ] Strous M, Kuenen J G, Jetten M S M. Key physiology of anaerobic ammonium oxidation[ J ]. Applied & Environmental Microbiology, 1999, 65 ( 7 ): 3 248 - 3 250.
[ 10 ] 周明俊,毛天广,吴 博,等. 厌氧氨氧化与反硝化耦合启动影响因素[ J ]. 供水技术,2018,12( 4 ):43 - 48.
[ 11 ] 赖杨岚,周少奇. 厌氧氨氧化与反硝化的协同作用特性研究[ J ]. 中国给水排水,2010,26( 13 ):6 - 10.
[ 12 ] 杨 麒,李小明,曾光明,等. 同步硝化反硝化机理的研究进展[ J ]. 微生物学通报,2003,30( 4 ):88 - 91.
[ 13 ] Ahn Y H, Hwang I S, Min K S. Anammox and partial denitritation in anaerobic nitrogen removal from piggery waste anaerobic nitrogen removal from piggery waste[ J ]. Water Science & Technology, 2004 ( 49 ): 145 - 153.
[ 14 ] Mathava K, Jih G L. Co-existence of anammox and denitrification for simultaneous nitrogen and carbon removal strategies and issues[ J ]. Journal of Hazardous Materials, 2010( 178 ): 1 - 9.
[ 15 ] Takekawa M, Park G, Soda S, et al. Simultaneous anammox and denitrification process in sequencing batch reactors[ J ]. Bioresource Technology, 2014( 174 ): 159 - 166.
[ 16 ] Durui, Peng Y Z, Cao S B, et al. Advanced nitrogen removal with simultaneous anammox and denitrification in sequencing batch reactor[ J ]. Bioresource Technology, 2014, 162 ( 6 ): 316 - 322.
[ 17 ] 张诗颖,吴 鹏,宋吟玲,等. 厌氧氨氧化与反硝化协同脱氮处理城市污水[ J ]. 环境科学,2015,36( 11 ):4 174 - 4 179.
[ 18 ] Leslie C,Grady C L,等. 废水生物处理:第二版,改编和扩充[ M ]. 北京:化学工业出版社,2003.
[ 19 ] Rysgaard S, Glud R N, Petersen N R, et al. Denitrification and an-
ammox activity in Arctic marine sediments[ J ]. Limnology & Oceanography, 2004, 49 ( 5 ): 1 493 - 1 502.
[ 20 ] Cheng L, Li X F, Lin X B, et al. Dissimilatory nitrate reduction pr-
ocesses in sediments of urban river networks: spatiotemporal variations and environmental implications[ J ]. Environmental Pollution, 2016( 219 ): 545 - 554.
[ 21 ] Zhao J W, Zhu D W, Fan J N, et al. Seasonal variation of anammox and denitrification in sediments of two eutrophic urban lakes[ J ]. Polish Journal of Environmental Studies, 2015 ( 24 ): 2 779 - 2 783.
[ 22 ] 杨 洋,左剑恶,沈 平,等. 温度、pH和有机物对厌氧氨氧化污泥活性的影响[ J ]. 环境科学,2006,27( 4 ): 691 - 695.
[ 23 ] Trimmer M, Nicholls J C. Production of nitrogen gas via anammox and denitrification in intact sediment cores along a continental shelf to slope transect in the North Atlantic[ J ]. Limnology & Oceanography, 2009, 54 ( 2 ): 577 - 589.
[ 24 ] 刘常敬,李泽兵,郑照明,等. 厌氧氨氧化耦合异养反硝化的脱氮性能及污泥性状[ J ]. 环境工程学报,2014,8( 8 ):3 137 - 3 142.
[ 25 ] 田文婷,李 军,王立军,等. 碳氮比及pH对厌氧氨氧化与反硝化耦合的影响[ J ]. 水处理技术,2010,36( 9 ):45 - 48.
[ 26 ] 张 黎,胡筱敏,姜彬慧. 低基质浓度下pH和DO对厌氧氨氧化反应效能的影响[ J ]. 环境工程,2015,33( 6 ):59 - 62.
[ 27 ] 段 庄,孙竹龙,张 智,等. 畜禽养殖废水甲烷化、反硝化和厌氧氨氧化除碳脱氮探讨[ J ]. 净水技术,2020,39( 8 ):137 - 142,153.
[ 28 ] 刘常敬,李泽兵,郑照明,等. 不同有机物对厌氧氨氧化耦合反硝化的影响[ J ]. 中国环境科学,2015,35( 1 ):87 - 94.
[ 29 ] JensenM M, Thamdrup B, Dalsgaard T. Effects of specific in-hib-
itors on anammox and denitrification in marine sediments[ J ]. Applied & Environmental Microbiology, 2007, 73 ( 10 ): 3 151 - 3 158.
[ 30 ] Pijuan M, Ribera-Guardia A, BalcazarJ L, et al. Effect of C-
OD on mainstream anammox: Evaluation of process performance, granule morphology and nitrous oxide production[ J ]. Science of The Total Environment, 2020( 712 ): 136 372.
[ 31 ] Zhu W Q, Zhang P Y, Dong H Y, et al. Effect of carbon source on nitrogen removal in anaerobic ammonium oxidation (anammox) process[ J ]. Journal of Bioscience and Bioengineering, 2016, 123 ( 4 ): 497 - 504.
[ 32 ] 万 莉,邹义龙,弓晓峰,等. 电增强零价铁强化厌氧氨氧化处理高氮养猪废水[ J ]. 环境科学研究,2015,28( 8 ):1 302 - 1 310.
[ 33] Tang C J, Zheng P, Wang C H, et al. Suppression of anaerobic ammonium oxidizers under high organic content in high-rate anammox UASB reactor[ J ]. Bioresource Technology, 2010, 101( 6 ): 1 762 - 1 768.
[ 34 ] Trimmer M, Risgaard-Petersen N, Nicholls J C, et al. Direct mea-
surements of anaerobic ammonium oxidation and denitrification in intact sediment cores[ J ]. Marine Ecology Progress, 2006( 326 ): 37 - 47.
[ 35 ] Wang X J, Yang R L, Guo Y, et al. Investigation of COD and COD
/N ratio for the dominance of anammox pathway for nitrogen removal via isotope labelling technique and the relevant bacteria[ J ]. Journal of Hazardous Materials, 2019( 366 ): 606 - 614.
[ 36 ] 吴莉娜,徐莹莹,史 枭,等. 短程硝化-厌氧氨氧化组合工艺深度处理垃圾渗滤液[ J ]. 环境科学研究,2016,29( 4 ):587 - 593.
[ 37 ] Dong X, Tollner E W. Evaluation of anammox and denitrification during anaerobic digestion of poultry manure[ J ]. Bioresource Technology, 2003, 86 ( 2 ): 139 - 145.
[ 38 ] Akunna J C, Bizeau C, Moletta R. Denitrification in anaerobic digesters: possibilities and influence of wastewater COD N-NOX ratio[ J ]. Environmental Technology, 1992, 13( 9 ): 825 - 836.
[ 39 ] 吕 振,李 燕. pH和C:N对厌氧氨氧化耦合短程反硝化脱氮性能的影响[ J ]. 环境污染与防治,2018,40( 10 ):1 106 - 1 111.
[ 40 ] 田文婷,李 军,王立军,等. 碳氮比及pH对厌氧氨氧化与反硝化耦合的影响[ J ]. 水处理技术,2010,36( 9 ):45 - 48.
[ 41 ] 周 凌,操家顺,蔡 娟,等. 低浓度氨氮条件下厌氧氨氧化反应器的启动研究[ J ]. 给水排水,2006,32( 11 ):34 - 37.
[ 42 ] 闾 刚,徐乐中,沈耀良,等. 基质比对ABR厌氧氨氧化工艺脱氮性能的影响[ J ]. 环境科学,2017,389( 5 ):2 006 - 2 011.
[ 43 ] 傅金祥,李业辉,由 昆,等. 基质比对厌氧氨氧化生物膜工艺脱氮效能的影响[ J ]. 水处理技术,2020,46( 5 ):106 - 110.
[ 44 ] 安芳娇,彭永臻,张永辉,等. 基质比对厌氧氨氧化脱氮性能的影响[ J ]. 环境科学学报,2018,38( 3 ):1 010 - 1 015.
[1]
秦晓悦. 汾源煤业5-1022巷掘进工作面陷落柱突水危险性评价分析 [J]. 煤炭与化工, 2021, 44(6): 42-44,48..
[2]
周 波1,曹宏兵2. 丙烯酸树脂合成中链接转移剂的应用 [J]. 煤炭与化工, 2021, 44(6): 142-144.
[3]
安 璐. 鑫源煤矿9号煤层开采冲击危险性评价 [J]. 煤炭与化工, 2021, 44(3): 11-14.
[4]
屠玉强. 北川煤矿瓦斯涌出特征及其影响因素分析 [J]. 煤炭与化工, 2020, 43(4): 92-94.
[5]
王荣江,于明园. 尿基复合肥生产类型和造粒影响因素 [J]. 煤炭与化工, 2020, 43(4): 125-127,130.
[6]
胡朋举,相海恩,张学晶,刘兵兵,孟凡超,肖 军. 酚试剂分光光度法测定空气中甲醛含量影响因素的研究 [J]. 煤炭与化工, 2020, 43(4): 140-142.
[7]
彭思伟1,薛 侨2,刘康乐1,罗 程1,汤 昱1,史 超1,王子杰1,林子增1,王 郑1. 电絮凝技术在水处理领域的研究进展 [J]. 煤炭与化工, 2020, 43(3): 133-137,144.
[8]
唱润宏,肖占梅. 复合肥结块影响因素及防结块措施 [J]. 煤炭与化工, 2020, 43(3): 142-144.
[9]
郭剑浩,金政伟,杨 帅,任 斌,李蕊宁,汪丹丹. 臭氧催化氧化技术在煤化工含盐废水深度处理中的应用 [J]. 煤炭与化工, 2020, 43(2): 136-139.
[10]
赵卓玲. 水中Cl-的测定方法及测定精度的因素分析 [J]. 煤炭与化工, 2019, 42(2): 149-151.
[11]
张蕊蕊. 鄂尔多斯盆地北部白垩系地下水水化学特征及影响因素研究 [J]. 煤炭与化工, 2019, 42(1): 57-60,64.
[12]
高 震,刘芃岩,马傲娟,邱 鹏. 2种五溴联苯醚的光降解机理及影响因素研究 [J]. 煤炭与化工, 2019, 42(1): 136-140.
[13]
孙 越. 煤对CO2反应性测定中的影响因素 [J]. 煤炭与化工, 2018, 41(7): 124-125.
[14]
赵卓玲. 低煤阶煤透光率的测定及影响因素分析 [J]. 煤炭与化工, 2018, 41(7): 119-120,123.
[15]
张 莉. 煤中砷的测定及影响因素分析 [J]. 煤炭与化工, 2018, 41(6): 151-152,155.