电絮凝技术在水处理领域的研究进展
彭思伟1,薛 侨2,刘康乐1,罗 程1,汤 昱1,史 超1,王子杰1,林子增1,王 郑1
1. 南京林业大学 土木工程学院,江苏 南京 210037;2. 杭州市水务集团有限公司,浙江 杭州 310009
Research progress of electroflocculation technology in water treatment field
Peng Siwei1, Xue Qiao2, Liu Kangle1, Luo Cheng1, Tang Yu1, Shi Chao1, Wang Zijie1,#br#
Lin Zizeng1, Wang Zheng1
1. College of Civil Engineering, Nanjing Forestry University, Nanjing 210037, China;
2. Hangzhou Water Affairs Group Corporation Ltd., Hangzhou 310009, China
摘要 电絮凝技术是一种以电化学为基础的净水方法,其吸附能力远高于一般的絮凝剂,具有设备简单、操作方便、无污染、产生的污泥量较低、不需要添加任何阴离子的特点,在水处理中的应用越来越多。介绍了电絮凝的基本原理,列出了影响电絮凝的主要因素(pH值、电流密度、电解时间、极板间距),并综述了其在水处理中的研究现状,提出了目前电絮凝法存在的问题,并对其在水处理工艺方面的发展趋势和应用前景进行了展望。
关键词 :
电絮凝 ,
影响因素 ,
水处理
Abstract :Electroflocculation technology is an electrochemical-based water purification method, which adsorption capacity is much higher than that of ordinary flocculants, and it has the characteristics of simple equipment, convenient operation, no pollution, low amount of sludge, no need for adding any anions, and more and more applications in water treatment. The basic principle of the electric flocculation was introduced, the main factors affecting electroflocculation (pH value, current density, electrolysis time, plate spacing) were listed, the research status in water treatment was reviewed, the current existing problems of the electroflocculation methods were put forward, and its development trend and application prospect in water treatment process were prospected.
Key words :
electrocoagulation
influencing factor
water treatment
基金资助: 国家自然科学基金资助项目(51608272);江苏高校优势学科建设工程资助项目(PAPD);南京林业大学大学生创新训练计
划资助项目(2019NFUSPITP0498)
通讯作者:
王 郑( 1978— ),男,安徽巢湖人,教授,博士。
作者简介 : 彭思伟( 1999— ),男,河南新乡人,在校本科生。
引用本文:
彭思伟1,薛 侨2,刘康乐1,罗 程1,汤 昱1,史 超1,王子杰1,林子增1,王 郑1. 电絮凝技术在水处理领域的研究进展[J]. 煤炭与化工, 2020, 43(3): 133-137,144.
Peng Siwei1, Xue Qiao2, Liu Kangle1, Luo Cheng1, Tang Yu1, Shi Chao1, Wang Zijie1,. Research progress of electroflocculation technology in water treatment field. CCI, 2020, 43(3): 133-137,144.
链接本文:
http://www.mtyhg.com.cn/CN/10.19286/j.cnki.cci.2020.03.041 或 http://www.mtyhg.com.cn/CN/Y2020/V43/I3/133
[ 1 ] Ben Sasson moshe, Adina Avner. Fouling mechanisms and energy appraisal in microfiltration pretreated by aluminum-based elec-
troflocculation[ J ]. J Membr Sci, 2016, 352( 1/2 ): 86 - 94.
[ 2 ] Liu F, Zhang ZX, Wang ZL, et al. Experimental study on treatment of tertiary oil recovery wastewater by electrocoagulation[ J ]. Chem Eng Process, 2019, 144.
[ 3 ] Moayedi H, Kazemian S, Vakili AH, et al. Coagulation of the Suspended
Organic Colloids Using the Electroflocculation Technique[ J ].
J Dispersion Sci, 2014, 35( 2 ): 273 - 282.
[ 4 ] 牛庆林,曹顺安. 电絮凝法预处理船舶生活污水研究[ J ]. 应用化工,2018,47( 3 ):541 - 547.
[ 5 ] 高 旭,李 鹏,王学刚,等. EDTA螯合-电絮凝处理低浓度含铀废水[ J ]. 环境工程,2018,36( 7 ):27 - 32.
[ 6 ] 田 锐. 电絮凝处理锂电池生产废水的研究[ D ]. 湖北省:武汉科技大学,2019:11.
[ 7 ] 杨青波,戴文娟,巫志远,等. 电絮凝技术处理洗衣废水的研究[ C ]//《 电器 》杂志社会议论文集. 中国浙江宁波:中国家用电器协会、《 电器 》杂志社,2018:803 - 808.
[ 8 ] 杨 龙,董海山,曾祥贵,等. 超声-电絮凝法处理吡啶类农药废水[ J ]. 四川环境,2018,37( 3 ):11 - 16.
[ 9 ] 刘思琦,曹 迪,张娟娟,等. 电絮凝去除电厂循环冷却水中硬度[ J ]. 环境工程学报,2019:1 - 12.
[ 10 ] 程宇婕,冯启言,李向东. 电絮凝微滤技术应用于给水处理的实验研究[ J ]. 能源环境保护,2008,22 ( 4 ):28 - 31.
[ 11 ] 杨鸿鹰,张国辉,冯党卫,等. 电絮凝法处理重金属冶炼污水的研究[ J ]. 中国有色冶金,2018,4( 2 ):49 - 51.
[ 12 ] 杨洪新,胡金玲,马文静. 电絮凝技术除磷的实验研究[ J ].
精细与专用化学品,2018,26( 10 ):30 - 34.
[ 13 ] He X W, Liu L Y, Hou S P.Energy Consumption in Defluoridation of Geothermal Water by Electroflocculation[ C ]//PROGRESS IN ENVIRONMENTAL SCIENCE AND TECHNOLOGY. China: Li S, Niu P, Wang W, et al, 2011: 163 - 167.
[ 14 ] Betancor-Abreu A, Mena VF, Gonzalez S, et al. Design and optimization of an electrocoagulation reactor for fluoride remediation in underground water sources for human consumption[ J ]. J Water Proc Eng, 2019, 31.
[ 15 ] Mena VF, Betancor-Abreu A, Gonzalez S, et al. Fluoride removal from natural volcanic underground water by an electrocoagulation process: Parametric and cost evaluations[ J ]. J Environ Manag, 2019, 246: 472 - 483.
[ 16 ] Sandoval M A, Fuentes R, Nava J L, et al. Simultaneous removal of fluoride and arsenic from groundwater by electrocoagulation using a filter-press flow reactor with a three-cell stack[ J ]. Sep Purif Technol, 2018, 208: 208 - 216.
[ 17 ] Aoudj S, Khelifa A, Drouiche N. Removal of fluoride, SDS, ammonia and turbidity from semiconductor wastewater by combined electrocoagulation-electroflotation[ J ]. Chemosphere, 2017, 180: 379 - 387.
[ 18 ] 周好磊,李少林,魏宏斌,等. 低电流电絮凝法去除废水中重金属离子的研究[ J ]. 中国给水排水,2017,33( 5 ):85 - 88.
[ 19 ] 杨国超,肖国光,余侃萍,等. 脉冲电絮凝处理含镉重金属废水[ J ]. 矿冶工程,2012,32( 6 ):51 - 53.
[ 20 ] Al-Shannag M, Al-Qodah Z, Bani-Melhem K, et al. Heavy metal ions removal from metal lating wastewater using electrocoagulation: Kinetic study and process performance[ J ]. Chem Eng J, 2014, 260: 749 - 756.
[ 21 ] Krystynik P, Masin P, Krusinova Z, et al. Application of electrocoagulation for removal of toxic metals from industrial effluents[ J ]. Int J Environ Sci Technol, 2019, 16( 8 ): 4 167 - 4 172.
[ 22 ] Gajda I, Stinchcombe A, Greenman J, et al. Microbial fuel - cell A novel self-powered wastewater electrolyses for electrocoagulation of heavy metals[ J ]. Int J Hydrogen Energy, 2019, 42( 3 ): 1 813 - 1 819.
[ 23 ] 代冬梅,徐 睿,王玉军,等. 电絮凝处理牛仔布印染废水[ J ]. 环境工程学报,2014,8( 7 ):2 947 - 2 951.
[ 24 ] 詹君翔,李 敬,许建平,等高压脉冲电絮凝法处理印染废水研究[ J ]. 能源与环境,2015( 3 ):65 - 67.
[ 25 ] Bilinska L, Blus K, Gmurek M, et al. Coupling of electrocoagulation and ozone treatment for extile wastewater reuse[ J ]. Chem Eng J, 2019, 358: 992 - 1 001.
[ 26 ] Aygun A, Nas B, Sevimli MF, et al. Treatment of reactive dyebath wastewater by electrocoagulation process: Optimization and cost-estimation [ J ]. Korean J Chem Eng, 2019, 36 ( 9 ): 1 441 - 1 449.
[ 27 ] Hakizimana J N, Gourich B, Vial C, et al. Assessment of hardness, microorganism and organic matter removal from seawater by electrocoagulation as a pretreatment of desalination by reverse osmosis[ J ]. Desalination, 2015, 393: 90 - 101.
[ 28 ] Myllymaki Pekka, Lahti Riika, Romar Henrik, et al. Removal of total organic carbon from peat solution by hybrid method-Electrocoagulation combined with adsorption[ J ]. J Water Proc Eng, 2018, 24: 56 - 62.
[ 29 ] Pizutti Janaina Terhorst, dos Santos, Rita de Cassia, et al. Electrocoagulation coupled adsorption for anaerobic wastewater post- treatment and reuse purposes[ J ]. Desalin Water Treat, 2019, 160: 144 - 152.
[ 30 ] Hakizimana JN, Gourich B, Chafi M, et al. Electrocoagulation process in water treatment: A review of electrocoagulation modeling approaches[ J ]. Desalination, 2017, 404: 1 - 21.
[ 31 ] 黄雪琪,靖 波,陈文娟,等. 电絮凝过程中倒极消除极板
钝化[ J ]. 环境工程学报,2019,13( 11 ):2 661 - 2 667.
[ 32 ] Zhang C, Jiang Y H, Li Y L, et al. Three-dimensional electrochemical process for wastewater treatment: a general review[ J ]. Chem Eng J, 2013, 228: 455 - 467.
[ 33 ] 贺 框,项 赟,杜建伟,等. 电絮凝-三维电极技术处理
含镍电镀废水[ J ]. 电镀与涂饰,2017,36( 3 ):160 - 164.
[ 34 ] Garcia - Gomez C, Vidales - Contreras J A, Marquez - Reyes J M, et al. Physical - chemical characterization of metal hydroxides sludge waste obtained from electrocoagulation processes and its application as adsorbent for organic pollutants removal in aqueous solution[ J ]. Desalin Water Treat, 2019(157): 29 - 38.
[ 35 ] 俞 晟. 超声-电絮凝联合处理高磷改性酯化淀粉废水[ J ]. 苏州市职业大学学报,2019,30( 3 ):39 - 45.
[1]
屠玉强. 北川煤矿瓦斯涌出特征及其影响因素分析 [J]. 煤炭与化工, 2020, 43(4): 92-94.
[2]
王荣江,于明园. 尿基复合肥生产类型和造粒影响因素 [J]. 煤炭与化工, 2020, 43(4): 125-127,130.
[3]
王明波1,王 琦1,刘国新2,张军立1. 头孢原料药生产废水处理工艺研究 [J]. 煤炭与化工, 2020, 43(4): 151-153.
[4]
朱奉敏. 增塑剂生产废水的处理研究及其资源化利用 [J]. 煤炭与化工, 2020, 43(4): 154-156.
[5]
唱润宏,肖占梅. 复合肥结块影响因素及防结块措施 [J]. 煤炭与化工, 2020, 43(3): 142-144.
[6]
郭剑浩,金政伟,杨 帅,任 斌,李蕊宁,汪丹丹. 臭氧催化氧化技术在煤化工含盐废水深度处理中的应用 [J]. 煤炭与化工, 2020, 43(2): 136-139.
[7]
计建洪. 物化+生化+物化组合工艺处理废水研究 [J]. 煤炭与化工, 2019, 42(8): 157-160.
[8]
赵卓玲. 水中Cl-的测定方法及测定精度的因素分析 [J]. 煤炭与化工, 2019, 42(2): 149-151.
[9]
张蕊蕊. 鄂尔多斯盆地北部白垩系地下水水化学特征及影响因素研究 [J]. 煤炭与化工, 2019, 42(1): 57-60,64.
[10]
高 震,刘芃岩,马傲娟,邱 鹏. 2种五溴联苯醚的光降解机理及影响因素研究 [J]. 煤炭与化工, 2019, 42(1): 136-140.
[11]
程韶华. 药剂协同添加煤泥水处理自动控制系统研究 [J]. 煤炭与化工, 2018, 41(9): 76-79,112.
[12]
樊 旭. 电化学水处理技术在工业循环冷却水处理中的应用 [J]. 煤炭与化工, 2018, 41(9): 155-158.
[13]
孙 越. 煤对CO2反应性测定中的影响因素 [J]. 煤炭与化工, 2018, 41(7): 124-125.
[14]
赵卓玲. 低煤阶煤透光率的测定及影响因素分析 [J]. 煤炭与化工, 2018, 41(7): 119-120,123.
[15]
张 莉. 煤中砷的测定及影响因素分析 [J]. 煤炭与化工, 2018, 41(6): 151-152,155.