地下水中砷污染释放机理及其治理措施
宋利娜1,刘翠棉1,路 娜1,任惠恩1,陈 玲2,赵丹晨1,马雄飞3
1. 石家庄市环境监控中心,河北 石家庄 050022;2. 河北正润环境科技有限公司,河北 石家庄 050000;
3. 河北省地质测绘院,河北 廊坊 065000
Release mechanism and treatment technology of arsenic pollution in groundwater
Song Lina1, Liu Cuimian1, Lu Na1, Ren Huien1, Chen Ling2, Zhao Danchen1, Ma Xiongfei3
1. Shijiazhuang Environment Supervision Center, Shijiazhuang 050022, China; 2. Hebei Zhengrun Environmental
Technology Corporation Ltd., Shijiazhuang 050000, China; 3. Hehei Institute of Geological Surveying and Mapping,
Langfang 065000, China;
摘要 针对不同高砷地下水污染问题,为探索有效的治理措施,介绍了我国地下水砷污染现状,阐明了地下水中砷的释放机理,综述了当前高砷地下水常用处理工艺,并对各处理工艺特点进行了详细归纳和总结。研究表明:混凝沉淀法和吸附法因其工艺简单,成本较低,应用范围较广;离子交换法和膜分离法去除率高,但因运行费用高,工艺复杂,应用较少;生物处理法具有工艺简单,成本低,无二次污染等特点,在高砷地下水修复领域具有较好的应用前景,有待进一步深入研究,并有可能发展成为未来治理地下水砷污染的有效方法。
关键词 :
地下水 ,
砷 ,
污染状况 ,
释放机理 ,
治理技术 ,
生物处理法
Abstract : In order to explore effective treatment measures for different groundwater pollution problems with high arsenic content, the present situation of arsenic pollution in groundwater in China was introduced, the releasing mechanism of arsenic in groundwater was elucidated, and the common treatment technology for treating high arsenic in groundwater was reviewed. The characteristics of each treatment process mentioned above were concluded and summarized in detail. The study showed that coagulation sedimentation method and adsorption method are widely used because of their simple process and low cost. Ion exchange method and membrane separation method have high removal rate, but they were rarely used because of high operation cost and complex process. The biological treatment has a good application prospect in the field of arsenic groundwater remediation due to its simple process, low cost and no secondary pollution. The biological treatment needs to be further studied and may be developed into an effective method to treat groundwater arsenic pollution in the future.
Key words :
groundwater
arsenic
pollution status
release mechanism
management technology
biological treatment
通讯作者:
马雄飞( 1986— ),男,河北保定人,工程师。
作者简介 : 宋利娜( 1984— ),女,河北邯郸人,工程师。
引用本文:
宋利娜1,刘翠棉1,路 娜1,任惠恩1,陈 玲2,赵丹晨1,马雄飞3. 地下水中砷污染释放机理及其治理措施[J]. 煤炭与化工, 2023, 46(1): 156-160.
Song Lina1, Liu Cuimian1, Lu Na1, Ren Huien1, Chen Ling2, Zhao Danchen1, Ma Xiongfei3. Release mechanism and treatment technology of arsenic pollution in groundwater. CCI, 2023, 46(1): 156-160.
链接本文:
http://www.mtyhg.com.cn/CN/10.19286/j.cnki.cci.2023.01.041 或 http://www.mtyhg.com.cn/CN/Y2023/V46/I1/156
[ 1 ] 张慧娟,刘云根,侯 磊,等. 小白河生态修复区沉积物中砷的空间分布特征[ J ]. 西北农林科技大学学报(自然科学版),2017,45( 9 ):55 - 62.
[ 2 ] 贾永锋. 内蒙河套盆地西部高盐高砷地下水成因探究及反应
热力学模拟[ D ]. 北京:中国地质大学,2015.
[ 3 ] 贾永锋,郭华明. 高砷地下水研究的热点及发展趋势[ J ]. 地球科学进展,2013,28( 1 ):51 - 61.
[ 4 ] 张 迪. 原位高砷地下水环境下铁氧化物矿物吸附态砷的释放特征及机理[ D ]. 北京:中国地质大学,2018.
[ 5 ] 郭华明,倪 萍,贾永锋,等. 原生高砷地下水的类型、化学特征及成因[ J ]. 地学前缘,2014,21( 4 ):1 - 12.
[ 6 ] Kapaj S, Peterson H, Liber K, et al. Human health effects from chronic arsenic poisoning-a review[ J ]. Journal of Environmental Science and Health. Part A: Toxic/Hazardous Substance and Environmental Engineering, 2006, 41( 10 ): 2 399 - 2 428.
[ 7 ] Guo HM, Wen DG, Liu ZY, et al. A review of high arsenic round-
water in Mainland and Taiwan, China: Distribution, characteristi-
cs and geochemical processes[ J ]. Applied Geochemistry, 2014( 41 ): 196 - 217.
[ 8 ] 王东霜. 麦糟阴离子吸附剂的制备及其用于低浓度含砷水的吸附研究[ D ]. 赣州:江西理工大学, 2015.
[ 9 ] 赵 泉. 地下水砷污染形成机制及治理技术[ J ]. 广东化工,2018, 45( 17 ):151 - 152.
[ 10 ] Ferguson JF, Gavis J. A Review of the Arsenic Cycle in Natural[ J ]. Waters. Water Research, 1972, 6( 11 ):1 259 - 1 274.
[ 11 ] 谢先军. 大同盆地浅层地下水环境中砷的来源与迁移转化规律研究[ D ]. 武汉:中国地质大学,2008.
[1]
何 越1,唐 军3,袁 野2,袁 英3. 基于3MRA模型的农村固体废物土壤—水—农作物暴露途径健康风险评价 [J]. 煤炭与化工, 2023, 46(2): 153-160.
[2]
孙世彪. 综放工作面上隅角瓦斯超限治理技术应用 [J]. 煤炭与化工, 2021, 44(9): 106- 108..
[3]
宫萍萍. 郭庄泉域地下水水化学特征及污染影响研究 [J]. 煤炭与化工, 2021, 44(8): 142-146,153..
[4]
吴 亮,何 伟. 宁夏宁东煤田灵武矿区煤中砷含量及赋存形态探讨 [J]. 煤炭与化工, 2021, 44(4): 57-60,117..
[5]
陈 峰,吴 涛. 基于Visual Modflow软件的地下水污染物运移模拟研究 [J]. 煤炭与化工, 2021, 44(2): 85-89,116,54..
[6]
刘 健. 四极电测深技术在南五十家子镇地下水资源探查中的应用 [J]. 煤炭与化工, 2021, 44(11): 61-63,90..
[7]
疏义国1,李亚昊2,王宏伟1,孔皖军3. 侏罗系含水层地下水动态特征及其涌水量预测 [J]. 煤炭与化工, 2020, 43(6): 50-57.
[8]
郭亮亮,杨东峰. 榆神矿区浅表层地下水动态特征分析 [J]. 煤炭与化工, 2020, 43(2): 51-54.
[9]
彭园花,练 川,刘 露,马 赛. 某高炉炼铁企业搬迁场地土壤污染状况调查 [J]. 煤炭与化工, 2020, 43(2): 158-160.
[10]
赵盈盈. 馆陶县第四系水文地质条件分析 [J]. 煤炭与化工, 2020, 43(1): 61-62,125.
[11]
周 科. 基于矿井生产分块段和分水平的三维地下水数值模拟 [J]. 煤炭与化工, 2019, 42(9): 48-52,56.
[12]
张蕊蕊. 鄂尔多斯盆地北部白垩系地下水水化学特征及影响因素研究 [J]. 煤炭与化工, 2019, 42(1): 57-60,64.
[13]
张 莉. 煤中砷的测定及影响因素分析 [J]. 煤炭与化工, 2018, 41(6): 151-152,155.
[14]
王 永. 淮北矿区北部徐楼应急水源地潜力评价研究 [J]. 煤炭与化工, 2018, 41(5): 45-48.
[15]
吴 迪. 柳湾煤矿小窑火区综合治理技术应用 [J]. 煤炭与化工, 2018, 41(5): 114-116,120.