MDC和MEC及其耦合系统在水处理应用的研究进展
李 广,周 铁,余运湧,李星雨
吉林建筑大学 市政与环境工程学院,吉林 长春 130118
Research progress of MDC and MEC and their coupled systems in water treatment applications
Li Guang, Zhou Tie, Yu Yunyong, Li Xingyu
Jilin Jianzhu University, School of Municipal and Enviromental Engineering, Changchun 130118, China
摘要 为了处理废水,介绍了微生物脱盐燃料电池和微生物电解电池的起源、原理并结合国内外研究对其各自在废水处理方面的应用。提出了一种无需外加电源辅助的新工艺—MDC-MEC耦合系统,结合以上二者的原理为此耦合系统运行提供一定理论基础,此系统能够结合微生物脱盐电池特性,利用MDC进行产电、脱氨及氨回收,并将MDC作为微生物电解电池的外加电源辅助制氢,也对其在国内外在废水处理方面的应用进行综述,最后对MDC-MEC耦合系统的性能优化进行了展望。
关键词 :
微生物脱盐燃料电池 ,
微生物电解电池 ,
MDC-MEC耦合系统 ,
废水处理 ,
制氢 ,
性能优化
Abstract : To treat wastewater, the origins and principles of microbial desalination fuel cells and microbial electrolysis cells were introduced respectively, and their respective applications in wastewater treatment in the context of domestic and international research were reviewd. The above conclusions were combined to propose a new process without external power supply assistance MDC-MEC coupling system, combining the above two principles provides a theoretical basis for the operation of this coupled system. This system is capable of combining microbial desalination cell characteristics, power generation, deamination and ammonia recovery using MDC, and MDC is used as an external power source for microbial electrolysis cell to assist in hydrogen production, a review of its application in wastewater treatment in Japan and abroad is also presented, finally, the performance optimization of the coupled MDC-MEC system is envisioned.
Key words :
microbial desalination fuel cell
microbial electrolytic cell
MDC-MEC coupling system
wastewater treatment
hydrogen production
performance optimization
基金资助: A/A/O-MBBR耦合工艺处理城镇污水效能研究(项目编号:2019C055-6)
通讯作者:
周 铁( 1998— ),男,吉林长春人,硕士研究生。
作者简介 : 李 广( 1982— ),男,吉林长春人,副教授。
[ 1 ] AGUIAR J B. A waterless life cycle for cosmetic products[ J ]. Sustainable Production and Consumption, 2022( 32 ):2 218 - 2 230.
[ 2 ] MOHAMMAD M,HAKIMEH M. Investigatio n of the efficiency of microbial desalination cell in removal of arsenic from aqueous solutions[ J ]. Desalination, 2018( 438 ): 1 190 - 1 210.
[ 3 ] ZHANG L F. High-efficiency salt, sulfate and nitrogen removal and microbial community in biocathode microbial desalination cell for mustard tuber wastewater treatment[ J ]. Bioresource Technology, 2019( 289 ): 19 - 28.
[ 4 ] CAO X X, et al. A new method for water desalination using micro-
bial desalination cells[ J ]. Environmental Science&Technology, 2009, 43( 18 ): 7 148 - 7 152.
[ 5 ] 吴 晔,包文运,周文雅,等. 微生物脱盐燃料电池构造设计的研究进展[ J ]. 化工时刊,2020,34( 12 ):14 - 21.
[ 6 ] MORVARID K Z, et al. Electricity generation, desalination and microalgae cultivation in a biocathode-microbial desalina tion cell[ J ]. Journal of Environmental Chemical Engineering, 2017, 5( 1 ): 2 230 - 2 245.
[ 7 ] 刘 哲,张 智,张林防,等. 阳极 COD 对榨菜生产废水MDC产电、脱盐的影响及氨氮去除的微生物群落分析[ J ]. 环境工程学报,2020,14( 4 ):943 - 954.
[ 8 ] AN Z Y, ZHANG H C,WEN Q X, et al.Desalination combined with copper(II) removal in a novel microbial desalination cell[ J ]. Desalination, 2014( 346 ): 1 115 - 1 126.
[ 9 ] 刘 敏,胡晓洁,肖常泓,等. 微生物脱盐电池(MDC)对含铬废水的研究[ J ]. 广东化工,2019,46( 19 ):17 - 20.
[ 10 ] DAI J X, et al. Promoted Sb removal with hydrogen production in microbial electrolysis cell by ZIF-67-derived modified sulfate-reducing bacteria bio-cathode.[ J ]. The Science of the total environment, 2022( 856 ): 1 - 3.
[ 11 ] 王 敏,张 晖,曾惠娴,等. 水体富营养化成因·现状及修复技术研究进展[ J ]. 安徽农业科学,2022,50( 6 ):1 - 6,11.
[ 12 ] 甘怀斌. 吹脱加MAP组合工艺处理高浓度氨氮废水的实验研究[ D ]. 南昌:南昌大学,2019.
[ 13 ] Xue W, et al. Ammonium recovery from reject water combined with hydrogen production in a bioelectrochemical reactor[ J ]. Bioresource Technology, 2013, 146.
[ 14 ] 李 涵,赵开心. 不同接种源对微生物电解池去除水中氨氮的影响[ J ]. 工业水处理,2022,42( 10 ):104 - 110.
[ 15 ] XU X X. The future of hydrogen energy: Bio-hydrogen production technology[ J ]. International Journal of Hydrogen Energy, 2022, 47( 79 ): 1 110 - 1 116.
[ 16 ] MIN S, WEI L L. Hydrogen production in single chamber microbi-
al electrolysis cells with stainless steel fiber felt cathodes[ J ]. Journal of Power Sources, 2016( 301 ): 1 - 5.
[ 17 ] SAMSUDEEN N, et al.Simultaneous biohydrogen production with distillery wastewater treatment using modified microbial electrolysis cell[ J ]. International Journal of Hydrogen Energy, 2020, 45( 36 ): 2 160 - 2 171.
[ 18 ] LI G, DESMOND A K, et al. Performance of Exoelectrogenic Bac-
teria Used in Microbial Desalination Cell Technology[ J ]. International Journal of Environ-mental Research and Public Health. 2020, 17( 2 ): 1 121 - 1 133.
[ 19 ] KOOMSON D A, ,et al. Performance of recirculatory Microbial D-
esalination Cell-Microbial Electrolysis Cell coupled system with different catholytes[ J ]. Renewable Energy, 2022( 189 ): 1 180 - 1 191.
[ 20 ] 张庆华,陈国涛,冯琳琳,等. 混合菌群对偶氮染料的脱色降解研究进展[ J ]. 应用与环境生物学报,2020,26( 2 ):469 - 478.
[ 21 ] YANG L, et al. Enhancement of azo dye decolourization in a MFC-
MEC coupled system[ J ]. Bioresource Technology, 2016( 202 ): 1 358 - 1 369.
[ 22 ] YAN L, JORDYN S, et al. Energy-positive wastewater treatment and desalination in an integrated microbial desalination cell (MDC)-microbial electrolysis cell (MEC) [ J ]. Journal of Power Sources, 2017( 356 ): 1 217 - 1 236.
[ 23 ] 吴丹菁,潘璐璐,刘维平. MFC-MEC生物电化学耦合系统回收钴[ J ]. 中国有色金属学报,2019,29( 7 ):1 536 - 1 542.
[ 24 ] 潘璐璐,吴丹菁,刘维平. MFC-MEC耦合系统产电性能及处理含镉重金属废水的研究[ J ]. 化工学报,2019,70( 1 ):242 - 250.
[1]
郭 杰,张俊杰,赵建威. 中水回用技术的研究 [J]. 煤炭与化工, 2021, 44(6): 150-152.
[2]
张 高1,周艳丽2. 臭氧协同光催化降解氨氮废水研究 [J]. 煤炭与化工, 2020, 43(7): 152-156.
[3]
王明波1,王 琦1,刘国新2,张军立1. 头孢原料药生产废水处理工艺研究 [J]. 煤炭与化工, 2020, 43(4): 151-153.
[4]
朱奉敏. 增塑剂生产废水的处理研究及其资源化利用 [J]. 煤炭与化工, 2020, 43(4): 154-156.
[5]
陈英杰. 天然气制氢技术进展及发展趋势 [J]. 煤炭与化工, 2020, 43(11): 130-133.
[6]
邓凯顺. 臭氧氧化技术在废水处理中应用研究 [J]. 煤炭与化工, 2017, 40(8): 156-160.
[7]
张智理,刘艳芳,牛建瑞,李再兴. 高级氧化技术处理抗生素废水研究进展 [J]. 煤炭与化工, 2017, 40(1): 37-39,151.
[8]
陆 锟,颜 康. 乙酸乙酯废水处理工艺模拟与优化 [J]. 煤炭与化工, 2014, 37(12): 81-82.