纳米Mn3O4的制备及应用
王文涛,侯永江,国 洁
河北科技大学 环境科学与工程学院,河北 石家庄 050018
Preparation and application of nano-Mn3O4
Wang Wentao, Hou Yongjiang, Guo Jie
School of Environmental Science and Engineering, Hebei University of Science and Technology,
Shijiazhuang 050018, China
摘要 近年来过渡金属锰氧化物研究火热,特别是对二氧化锰进行了广而深的研究,而Mn3O4作为另一种潜在的多功能性锰系氧化物( 超级电容器、催化剂及医学领域均有涉及 )尚未被系统研究。对最近5年来该材料的主要研究方向及应用领域进行分类整理后发现:纳米Mn3O4多与导电性良好的碳纤维、碳纳米管、石墨烯等碳材料相结合作为超级电容器电极材料来研究;催化方面,该材料多用于结合类芬顿法降解有机废水以及作为电催化催化剂用来产氢;医学领域高分散性和小尺寸Mn3O4材料被用于生物体内成像和靶向治疗的药物载体。因Mn3O4应用领域拓展的核心要素在于纳米技术,故对其形貌和尺寸的控制将成为今后研究的重点。
关键词 :
过渡金属锰氧化物 ,
纳米Mn3O4 ,
超级电容器 ,
催化 ,
医学
Abstract : In recent years, transition metal manganese oxides have been hotly studied, and in particular, manganese dioxide has been extensively and deeply studied, but another potential multifunctional manganese oxide, Mn3O4 which is involved in supercapacitors,the catalysts and medical fields has not been systematically studied.The main research contents and application fields of nano-Mn3O4 in the last five years has classified, As a result, it was found that the nano-Mn3O4 is mostly combined with carbon materials such as carbon fibers, carbon nanotubes, and graphene, which are well-conducted, as supercapacitor electrode materials. In terms of catalysis, this material is mostly used for the degradation of organic wastewater by the combination of Fenton-like processes and as an electrocatalytic catalyst for the production of hydrogen. Medicine, highly dispersible and small-size nano-Mn3O4 is used as drug carriers for in vivo imaging and targeted therapy. Because the core element of the application development of Mn3O4 is nanotechnology.The control of its morphology and size will become the focus of future research.
Key words :
transition metal manganese oxides
nano-Mn3O4
supercapacitors
catalysis
medicine
作者简介 : 王文涛( 1992— ),男,河北邯郸人,在校硕士研究生。
[ 1 ] 陆桂年,章巧珍.四氧化三锰( Mn3O4 )的研制[ J ]. 化工时刊,1987( 6 ):19 - 22.
[ 2 ] 李长安. 四氧化三锰的制备及吸附性能研究[ D ]. 吉首大学,2013.
[ 3 ] 陈权启. 溶剂热法制备纳米磁性四氧化三锰的研究[ D ]. 中南大学,2003.
[ 4 ] LIU Minghui, ZENG Huachun. Spontaneous Formations of Super-
lattices and Supracrystals fromVarious Forms of Mn3O4 Nanocrystals Cryst[ J ]. Growth Des, 2012, 12( 11 ): 5 561 - 5 570.
[ 5 ] Park H W, Lee H J, Park S-M, et al. Synthesis and Electrochemi-
cal Properties of Mn3O4 Nanocrystals with Controlled Morphologies Grown from Compact Ion Layers RSC Adv[ J ]. Cheminform, 2016 ( 6 ): 18 191 - 18 197.
[ 6 ] 黄 萍. 氧化锰基纳米材料的绿色合成及其作为超级电容器电极材料的应用[ D ]. 西北师范大学,2016.
[ 7 ] XIA Yanfeng, ZHE Qiang, Lee B, et al.Solid state microwave syn-
thesis of highly crystalline ordered mesoporous hausmannite Mn3O4 films Cryst Eng Comm[ J ]. The American Ceramic Society, 2017( 19 ): 4 294 - 4 303.
[ 8 ] 贾攀锋,池永庆,李 鹏,等. 甲醇直接还原高锰酸钾制备纳米Mn3O4[ J ]. 太原科技大学学报,2017,38( 2 ):147 - 151.
[ 9 ] 徐国荣,李钰冰,董文豪,等. 碱性介质中制备纳米四氧化三锰及其超级电容特性[ J ]. 应用化学,2015,32( 6 ):701 - 707.
[ 10 ] Park G, Bar L, Lee K G, et al. One-step sonochemical synthesis of a graphene oxide manganese oxide nanocomposite for catalytic glycolysis of poly[ J ]. Ethylene Terephthalate Nanoscale, 2012( 4 ): 3 879 - 3 885.
[ 11 ] Karnekanti D, Ramana S, Sudipta K, et al. Strongly coupled Mn3O4
-Porous Organic Polymer Hybrid:A Robust[ J ]. Durable and Potential Nanocatalyst for Alcohol Oxidation ReactionsRSC Adv., 2016( 6 ):36 728 - 36 735.
[ 12 ] JIN Wen, HAN Xijjiang, HE Yanzhen, et al. Galvanic replacement mediated synthesis of r GO-Mn3O4-Pt nanocomposites for oxygen reduction reaction RSC Adv[ J ]. Power Souces,2016( 6 ): 89 124
- 89 129.
[ 13 ] YIN Shunli, WANG Xiaomei, MOU Zhigang, et al. Synergistic
contributions by decreasing overpotential and enhancing charge-transfer in a-Fe2O3/Mn3O4/graphene catalysts with heterostructures for photocatalytic water oxidation Phys[ J ]. Chem
Chem Phys, 2014( 16 ):11 289 - 11 296.
[ 14 ] Rahaman H, Barman K, Jasimuddin Sk. Hybrid Mn3O4-NiO nano-
composites as effcient photoelectrocatalysts towards water splitting under neutral pH conditions[ J ]. RSC Adv, 2016 ( 6 ):113 694
- 113 702.
[ 15 ] LI Xu, LIU Pengfei, Zhang Le, et al. Enhancing the alkaline hy-
drogen evolution reaction activity through the Ni-Mn3O4 nanoco-
mposites [ J ]. Chem Commun, 2016 ( 52 ): 10 566 - 10 569.
[ 16 ] TIAN Yaxi, LIU Ran, SUN Zebin, et al. Fibrous porous silica mic-
rospheres decorated with Mn3O4 for effective removal of methyl orange from aqueous solution[ J ]. RSC Adv, 2015 ( 5 ): 106 068 -
106 076.
[ 17 ] WENG Zhengzhang, LI Jie, WENG Yali, et al. Surfactant - free Porous nano-Mn3O4 as a Recyclable Fenton-Like Reagent That Can Rapidly Scavenge Phenolics without H2O2[ J ]. Mater Chem A, 2017 ( 5 ): 15 650 - 15 660.
[ 18 ] 叶玉珠. 磁性四氧化三锰微细颗粒的制备及其催化性能的测试[ D ]. 重庆大学,2015.
[ 19 ] 何盈盈,孟 建,马亚利,等. 宽pH条件下Mn3O4/ACF复合阴极类电芬顿体系降解亚甲基蓝[ J ]. 化工学报,2017,68( 1 ):305 - 312.
[ 20 ] 代安涛. 适配体修饰的磁光多功能Mn3O4-SiO2纳米粒子造影剂的制备及其生物应用[ D ]. 上海师范大学,2012.
[ 21 ] ZHAGN Yi, TAN Jieqiong, LONG Mei, et al. An emerging dual collaborative strategy for high-performance tumor therapy by mesoporous silica nanotubes loading Mn3O4[ J ]. Mater Chem B, 2016( 4 ):7 406 - 7 414.
[ 22 ] 姚 军,孙丽美,高 飞. 部分氧化法制备插层石墨/Mn3O4复合材料及其电化学性能研究[ J ]. 化工新型材料,2016,44( 12 ):40 - 42.
[ 23 ] Mondal C, Ghosh D, Aditya T, et al. Mn3O4 nanoparticles anchored to multiwall carbon nanotubes: a distinctive synergism for high performance supercapacitor New [ J ]. Chem, 2015( 39 ): 8 373
- 8 380.
[ 24 ] JING Mingjun, WANG Jufeng, HOU Hongshuai, et al. Carbon Quantum Dots Coated Mn3O4 with Enhanced Performances for Lithium-ion Batteries [ J ]. Mater, Chem, A, 2015( 3 ):16 824 - 16 830. [ 25 ] Sambandam B, Soundharrajan V, Song J, et al. Sponge Inorg network-shaped Mn3O4/C anode derived from a simple, one-pot metal organic framework-combustion technique for improved lithium ion storage [ J ]. Chem Front, 2016( 3 ): 1 609 -
1 615.
[ 26 ] ZHU Shasha, ZHANG Peipei, CHANG Ling, et al. Photochemical fabrication of 3D hierarchical Mn3O4/H-TiO2 composite films with excellent electrochemical capacitance performance [ J ]. Chem Phys, 2016( 18 ): 8 529 - 8 536.
[ 27 ] 唐明欢. 镍阳极和CTAB对水热电沉积Mn3O4超级电容器电极材料的影响研究[ D ]. 深圳大学,2017.
[ 28 ] FAN Xiaoyong, YU Cui, LIU Pan, et al. Electrochemical construc-
tion of three dimensional porous Mn3O4 nanosheet arrays as anode of lithium ion battery [ J ]. Chem Phys, 2016( 18 ): 22 224 - 22 234.
[1]
李学飞. 影响甲醇合成的因素 [J]. 煤炭与化工, 2018, 41(8): 138-140,160.
[2]
李奕萱,侯永江,国 洁,李 博. 石墨烯基复合金属纳米材料在燃料电池应用中的研究进展 [J]. 煤炭与化工, 2018, 41(8): 125-129.
[3]
亢丽娜. 苯选择性加氢制环己烯催化技术研究进展 [J]. 煤炭与化工, 2018, 41(8): 130-132.
[4]
白延利1,张 静1,刘国旗1,张宗磊2,王红梅1,任志勇1,李 欢1,郅欢欢1,陈凤娟3. 高盐及高有机物废水处理工艺研究 [J]. 煤炭与化工, 2018, 41(8): 147-150.
[5]
刘玉蕾1,徐广锋2,侯永江1,国 洁1,李 博1. 镍基双金属纳米颗粒的制备方法 [J]. 煤炭与化工, 2018, 41(7): 126-129,140.
[6]
林 帅,荆计生,王 旭,何 艳. 煤制乙二醇路线中草酸二甲酯合成工艺控制参数探究 [J]. 煤炭与化工, 2018, 41(5): 133-135,138.
[7]
张 权1,国 洁1,薛 骁2,侯永江1. 湿式氧化技术处理高浓度有机废水的研究进展 [J]. 煤炭与化工, 2018, 41(5): 139-143.
[8]
祁嘉昕. 环己酮生产工艺技术方案的对比分析 [J]. 煤炭与化工, 2018, 41(4): 140-143.
[9]
张小东,赵飞燕. 金属锗在高新技术领域中的应用 [J]. 煤炭与化工, 2018, 41(2): 32-34,37.
[10]
任俊卿1,黄学敏2,郭旭青2 . 甲苯甲醇侧链烷基化制苯乙烯研究现状及展望 [J]. 煤炭与化工, 2018, 41(10): 130-132,145.
[11]
丁云龙. WO3/ZrO2型固体超强酸催化剂在石化领域的研究现状 [J]. 煤炭与化工, 2018, 41(10): 136-138.
[12]
闫 慧. 预硫化型耐硫变换催化剂的工业应用 [J]. 煤炭与化工, 2017, 40(9): 105-108.
[13]
刘 毅1,辛纪衡2,刘晓莲1,吕学松1,刘培臻1, 张晓阳1,陈 红1. 多氯丙酮催化脱氯的研究 [J]. 煤炭与化工, 2017, 40(5): 75-77.
[14]
夏万东. 4-乙烯基-2,3-二氢苯并呋喃的合成
[J]. 煤炭与化工, 2017, 40(3): 81-82.
[15]
闫 皙. 苯催化加氢制环己烯Ru系催化剂共沉淀法的制备 [J]. 煤炭与化工, 2017, 40(3): 86-90.