Abstract:The mechanism of methane/dimethyl ether chemical reaction was reduced by genetic algorithm, which could effectively enhance the calculation speed and decrease the calculation cost meanwhile ensuring the calculation accuracy. Twenty-four target conditions were selected to guide the homogeneous ignition calculation, and the ignition delay time and steady-state temperature were used as the optimization indexes to guide the genetic algorithm to ensure that the final simplified mechanism can comprehensively and reliably describe the combustion characteristics of the methane/dimethyl ether fuel mixture. The simplified mechanism consists of 45 species and 119 reaction steps, and its ignition delay time has a maximum error of no more than 4.5% with respect to the original mechanism. The validity of the simplified mechanism was also verified by the measured data using surge tubes and laminar flow flames. Meanwhile, in the methane/dimethyl ether high-pressure turbulent combustion numerical calculation, the simplified mechanism maintains good agreement with the detailed mechanism in terms of temperature field, free radicals, end product trends and numerical magnitude, while reducing the computation time by nearly 30%. The simplified mechanism achieves a good balance between computational accuracy and computational cost, and facilitates numerical simulation of large-scale batch combustion.
[ 1 ] Chen W, Hsu C, Wang X. Thermodynamic approach and compari-
son of two-step and single step DME (dimethyl ether) syntheses with carbon dioxide utilization[ J ]. Energy, 2016( 109 ): 326 - 340.
[ 2 ] Semelsberger T A, Borup R L, Greene H L. Dimethyl ether (DME) as an alternative fuel[ J ]. Journal of Power Sources, 2006, 156( 2 ): 497 - 511.
[ 3 ] Park S H, Lee C S. Combustion performance and emission reduct-
ion characteristics of automotive DME engine system[ J ]. Progress in Energy and Combustion Science, 2013, 39( 1 ): 147 - 168.
[ 4 ] Kang Y, Wei S, Zhang P, et al. Detailed multi-dimensional study on NOx formation and destruction mechanisms in dimethyl ether/air diffusion flame under the moderate or intense low-oxygen dilution (MILD) condition[ J ]. Energy, 2017( 119 ): 1 195 - 1 211.
[ 5 ] Jin T, Wu Y, Wang X, et al. Ignition dynamics of DME/methane-
air reactive mixing layer under reactivity controlled compression ignition conditions: Effects of cool flames[ J ]. Applied Energy, 2019( 249 ): 343 - 354.
[ 6 ] Ezoji H, Shafaghat R, Jahanian O. Numerical simulation of dimet-
hyl ether/natural gas blend fuel HCCI combustion to investigate the effects of operational parameters on combustion and emissions[ J ]. Journal of thermal analysis and calorimetry, 2019, 135( 3 ): 1 775 - 1 785.
[ 7 ] Park S H, Yoon S H, Cha J, et al. Mixing effects of biogas and di-methyl ether (DME) on combustion and emission characteristics of DME fueled high-speed diesel engine[ J ]. Energy, 2014( 66 ): 413 - 422.
[ 8 ] Zhao Z, Chaos M, Kazakov A, et al. Thermal decomposition reacti-
on and a comprehensive kinetic model of dimethyl ether[ J ]. International journal of chemical kinetics, 2008,40( 1 ): 1 - 18.
[ 9 ] Burke U, Somers K P, O Toole P, et al. An ignition delay and kin-
etic modeling study of methane, dimethyl ether, and their mixtures at high pressures[ J ]. Combustion and Flame, 2015, 162( 2 ): 315 - 330.
[ 10 ] Bhattacharya A, Basu S. An investigation into the heat release and emissions from counterflow diffusion flames of methane/dimethyl ether/hydrogen blends in air[ J ]. International Journal of Hydrogen Energy, 2019, 44( 39 ): 22 328 - 22 346.
[ 11 ] Hashemi H, Christensen J M, Glarborg P. High-pressure pyrolysis and oxidation of DME and DME/CH4[ J ]. Combustion and Flame, 2019( 205 ): 80 - 92.
[ 12 ] Reuter C B, Zhang R, Yehia O R, et al. Counterflow flame experi-
ments and chemical kinetic modeling of dimethyl ether/methane mixtures[ J ]. Combustion and Flame, 2018( 196 ): 1 - 10.
[ 13 ] Charles K W, Yasuhiro M, Thierry J P, et al. Computational com-
busion[ J ]. Proceedings of the Combustion Institute, 2004, 30( 1 ): 26 - 35.
[ 14 ] 郑 东,于维铭,钟北京. RP-3航空煤油替代燃料及其化学反应动力学模型[ J ]. 物理化学学报,2015( 4 ):636 - 642.
[ 15 ] 马洪安,解茂昭,曾 文,等. 航空发动机燃烧室燃烧过程与排放物生成的反应动力学数值模拟[ J ]. 航空动力学报,2013,28( 2 ):297 - 306.
[ 16 ] Lu T, Law C K. Toward accommodating realistic fuel chemistry in large-scale computations[ J ]. Progress in energy and combustion science, 2009, 35( 2 ): 192 - 215.
[ 17 ] Tomlin A S, Turanyi T, Pilling M J. ChemInform Abstract: Mathe-
matical Tools for the Construction, Investigation and Reduction of Combustion Mechanisms[ J ]. ChemInform, 1998, 29( 32 ): 49 - 56.
[ 18 ] Shan-ling L I, Yong J, Rong Q. Detailed Mechanism Reduction for C3H8/DMMP/Air Flame Based on Path Flux Analysis-Sensitivity Analysis Method[ J ]. Ran shao ke xue yu ji shu (Tianjin, China), 2012( 5 ): 473 - 479.
[ 19 ] 乔 瑜,徐明厚,姚 洪. 基于敏感性分析的甲烷反应机理优化简化[ J ]. 华中科技大学学报(自然科学版), 2007( 5 ):85 - 87.
[ 20 ] Li R, He G, Qin F, et al. Development of skeletal chemical mecha-
nisms with coupled species sensitivity analysis method[ J ]. Journal of Zhejiang University. A. Science, 2019, 20( 12 ): 908 - 917.
[ 21 ] 陈菲儿,邱 越,阮 灿,等. 基于直接关系图类方法的丙烯详细机理骨架简化[ J ]. 燃烧科学与技术,2019,25( 6 ):475 - 482.
[ 22 ] 林圣强,谢 鸣,王佳星,等. 燃烧反应机理全局性简化及骨架机理优化[ J ]. 燃烧科学与技术,2019,25( 5 ):395 - 400.
[ 23 ] 于 笑,李 晶. 正辛醇/正丁醚骨架机理的构建及验证[ J ]. 内燃机学报,2021,39( 1 ):67 - 73.
[ 24 ] Sun W, Chen Z, Gou X, et al. A path flux analysis method for the reduction of detailed chemical kinetic mechanisms[ J ]. Combusti-
on and Flame, 2010, 157( 7 ): 1 298 - 1 307.
[ 25 ] 刘再刚,杨 帆,孔文俊. 基于CO-DAC 的合成气反应极限分析[ J ]. 燃烧科学与技术,2017( 1 ):61 - 67.
[ 26 ] 苟小龙,孙文廷,陈 正. 燃烧数值模拟中的复杂化学反应机理处理方法[ J ]. 中国科学:物理学力学天文学,2017,47( 7 ):62 - 78.
[ 27 ] 金 钊,萧 鹏,戴景民. 固体推进剂火箭发动机羽焰温度诊断的遗传算法研究[ J ]. 燃烧科学与技术,2006( 3 ):213 - 216.
[ 28 ] 吴振阔,韩志玉. 天然气-柴油双燃料燃烧的微种群遗传算法数值优化[ J ]. 内燃机学报,2020( 4 ):359 - 367.
[ 29 ] Oluwole O O, Barton P I, Green W H. Obtaining accurate solutions using reduced chemical kinetic models: a new model reduction method for models rigorously validated over ranges[ J ]. Combustion theory and modelling, 2007, 11( 1 ): 127 - 146.
[ 30 ] Elliott L, Ingham D B, Kyne A G, et al. Reaction mechanism redu-
ction and optimisation for modelling aviation fuel oxidation using standard and hybrid genetic algorithms[ J ]. Computers & Chemical Engineering, 2006, 30( 5 ): 889 - 900.
[ 31 ] 牛晓晓,王贺春,李 旭,等. 基于神经网络的柴油机性能预测模型优化[ J ]. 内燃机学报,2018,36( 6 ):561 - 568.
[ 32 ] 许全宏,刘振涛,张 弛,等. 基于显式函数和神经网络的喷气燃料混合模型的研究及应用[ J ]. 燃烧科学与技术,2017,23( 5 ):391 - 397.
[ 33 ] Blasco J, Fueyo N, Dopazo C, et al. A self-organizing-map appro-
ach to chemistry representation in combustion applications[ J ]. Combustion theory and modelling, 2000, 4( 1 ): 61 - 76.
[ 34 ] Elliott L, Ingham D B, Kyne A G, et al. Reaction mechanism redu-
ction and optimisation for modelling aviation fuel oxidation using standard and hybrid genetic algorithms[ J ]. Computers & Chemical Engineering, 2006, 30( 5 ): 889 - 900.
[ 35 ] Elliott L, Ingham D B, Kyne A G, et al. Reaction Mechanism Red-
uction and Optimization Using Genetic Algorithms[ J ]. Industrial & Engineering Chemistry Research, 2005,44( 4 ): 658 - 667.
[ 36 ] Sikalo N, Hasemann O, Schulz C, et al. A Genetic Algorithm Ba-
sed Method for the Automatic Reduction of Reaction Mechanisms[ J ]. International Journal of Chemical Kinetics, 2014, 46( 1 ): 41 - 59.
[ 37 ] Lee H C, Mohamad A A, Jiang L Y. A detailed chemical kinetics for the combustion of H2/CO/CH4/CO2 fuel mixtures[ J ]. Fuel (Guildford), 2017, 193: 294 - 307.
[ 38 ] Keyvan B, Ugur A, R. K S, et al. A reduced mechanism for predic-
ting the ignition timing of a fuel blend of natural-gas and n-heptane in HCCI engine[ J ]. Energy Conversion and Management, 2014( 79 ): 59 - 62.
[ 39 ] Goodwin D G, Moffat H K, Speth R L. Cantera: An Object-oriented Software Toolkit for Chemical Kinetics, Thermodynamics, and Transport Processes[ J ]. Version 2.2.1. 2016( 59 ): 48 - 53.
[ 40 ] Wang Y, Liu H, Ke X, et al. Kinetic modeling study of homogene-
ous ignition of dimethyl ether/hydrogen and dimethyl ether/methane[ J ]. Applied thermal engineering, 2017( 119 ): 373 - 386.