羰基合成与羰基化催化剂的研究进展及工业化应用
高晓奇1,赵 伟2,张 静2,任 珂2,张玉玲2,岳广明3
1. 陕西兴化集团有限责任公司,陕西 兴平 713100;2. 延长中科(大连)能源科技股份有限公司,辽宁 大连 116085;
3. 河南利源新能科技有限公司,河南 安阳 455000
Research and application progress of catalysts for carbonyl synthesis and industrial carbonylation
Gao Xiaoqi1, Zhao Wei2, Zhang Jing2, Ren Ke2, Zhang Yuling2, Yue Guangming3
1. Shaanxi Xinghua(Group)Corporation Ltd.,Xingping 713100, China; 2. Yanchang Zhongke (Dalian) Energy Technology Corporation Ltd., Dalian 116085, China; 3. Henan Liyuan Xinneng Technology Corporation Ltd., Anyang 455000, China
摘要 羰基合成反应在催化化学中扮演着重要角色,并通过新合成方法和新物质的多样性创制成为生产多种含氧化合物及高附加值产品的重要途径。而恰当的催化体系是羰基合成工艺和技术的关键,也是羰基化反应实现工业化的研究重点。首先从不同的反应底物、不同的羰基来源以及不同的反应类型等方面对羰基合成反应及研究进展进行概述,然后从以金属和非金属为活性中心的角度对羰基化催化剂的应用及研究进展进行阐述,最后列举了几种典型的羰基合成反应及羰基化催化剂在工业上的应用。
关键词 :
羰基合成化学 ,
羰基化催化剂 ,
金属活性中心 ,
羰基金属配合物 ,
非金属活性中心 ,
分子筛
Abstract :Carbonyl synthesis reaction plays an important role in catalytic chemistry,and through the new synthesis methods and the diversity of new substances become a significant pathway for produce diverse oxygen-containing compounds and high-value-added products. The selection of an appropriate catalytic system is the key to the process and technology of carbonyl synthesis,and it is also the focus of research to realize industrialization of carbonyl reaction. Firstly, this dissertation the carbonyl synthesis reaction and research progress from the aspects of different reaction substrates, different carbonyl sources and different reaction types were summarized, then the application and research progress of carbonylation catalysts from the perspective of metal and non-metal active centers were expounded, and finally several typical carbonyl synthesis reactions and industrial applications of carbonylation catalysts were enumerated.
Key words :
carbonyl synthesis chemical
carbonylation catalyst
metal active center
carbonyl metal complexes
non-metal active center
molecular sieve
通讯作者:
张玉玲( 1989— ),女,黑龙江齐齐哈尔人,工程师。
作者简介 : 高晓奇( 1988— ),男,陕西榆林人,工程师。
[ 1 ] Roelen O. Production of oxygenatede carbon compounds[ P ]. US, 2327066. 1943 - 08 - 17.
[ 2 ] Kiss G. Palladium-Catalyzed Reppe Carbonylation [ J ]. Chem. R-
ev, 2001( 8 ): 3 435 - 3 456.
[ 3 ] 夏春谷. 羰基化学[ M ]. 北京:科学出版社,2021.
[ 4 ] Goetz R W. Process for preparing glycolaldehyde and/or ethylen-
eglycol[ P ]. US, 4405821. 1983 - 09 - 20.
[ 5 ] 应于舟,赵振康,杨菊群,等. 环氧乙烷催化合成3-羟基丙酸甲酯的研究[ J ]. 华东理工大学学报(自然科学版),2008,34( 3 ):334 - 337.
[ 6 ] Okano T, Kobayashi T, Konishi H, et al. Hydroformylation of olefi-
ns with paraformaldehyde catalyzed by rhodium complexes[ J ]. Tetrahedron Lett, 1982, 23( 47 ): 4 967 - 4 968.
[ 7 ] Ren X Y, Zheng Z Y, Zhang L, et al. Rhodium-complex-catalyzed hydroformylation of olefins with CO2 and hydrosilane[ J ]. Angew Chem Int Ed Engl, 2017, 56( 1 ): 310 - 313.
[ 8 ] Ren W L, Chang W J, Shi Y A, et al. An effective Pd-catalyzed r-
egioselective hydroformylation of olefins with formic acid[ J ]. J. Am. Chem. Soc. 2016, 138( 45 ), 14 864 - 14 867.
[ 9 ] Jenner G. Ruthenium catalyzed hydroformylation reactions using in situ generation of synthesis gas from aqueous methyl formate[ J ]. Appl Catal, 1991, 75( 1 ): 289 - 298.
[ 10 ] Botteghi C, Paganelli S, Schionato A, et al. The asymmetric hydro-
formylation in the synthesis of pharmaceuticals[ J ]. Chirality, 1991, 3( 4 ): 335 - 369.
[ 11 ] Arhancet J.P, Davis M.E, Hanson B E, et al. Supported aqueous-
phase catalysts[ J ]. J. Catal, 1990, 121( 2 ): 327 - 339.
[ 12 ] Davis M.E, Arhancet J.P, Hanson B E. Process for the hydroform-
ulation of olefinically unsaturated organic reatants using a supported aqueous phase catalyst [ P ]. US, 4947003, 1990 - 08 - 07.
[ 13 ] 刘海超,陈 华,李贤均,等. 负载水溶性铑-膦配合物催化1-己烯氢甲酰化反应的研究[ J ]. 分子催化,1994-02,8( 1 ):22 - 28.
[ 14 ] 袁友珠,张 宇,陈 忠,等. 负载型水溶性铑膦配合物催化剂的结构和性能[ J ]. 物理化学学报,1998,14( 11 ):1 013 - 1 019.
[ 15 ] Fujimoto K, Shikada T, Omata K, et al. Vapor phase carbonylation of methanol with solid acid catalysts[ J ]. Chem Lett, 1984( 9 ): 2 047 - 2 050.
[ 16 ] Cheung P, Bhan A, Iglesia E, et al. Selective carbonylation of dimethyl ether to methyl acetate catalyzed by acidic zeolites[ J ]. Angew.Chem.Int.Ed, 2006, 45( 10 ): 1 617 - 1 620.
[ 17 ] Celik F E, Kim T J, Bell A T, et al. Vapor-phase carbonylation of dimethoxymethane over H-Faujasite[ J ]. Angew.Chem.Int.Ed, 2009, 48( 26 ): 4 813 - 4 815.
[ 18 ] 迪丽努尔·艾力,高希然,艾沙·努拉洪,等. 不同金属改性HZSM-5催化剂的甲醇羰基化反应能力[ J ]. 无机化学学报,2022,38( 5 ):901 - 912.
[ 19 ] Liu J L, Xue H F, Huang X M, et al. Stability enhancement of H-mordenite in dimethyl ether carbonylation to methyl acetate by pre-adsorption of pyridine[ J ]. Chinese J Catal, 2010, 31( 7 ): 729 - 738.
[ 20 ] 申文杰,刘俊龙,黄秀敏,等. 一种二甲醚羰基化制备乙酸甲酯的方法[ P ]:中国,200810011999.4.2009 - 12 - 30.
[ 21 ] Yao J, Xu G W, Shi L, et al. Regulation of Br nsted acid sites in H-MOR for selective methyl methoxyacetate synthesis[ J ]. Appl Organomet Chem, 2020, 34( 11 ): 5 925.
[ 22 ] 王玉和,贺德华,徐柏庆. 甲醇羰基化制乙酸[ J ]. 化学进展. 2003,15( 3 ): 215 - 221.
[ 23 ] Glenn J S, Derrick J W. High productivity methanol carbonylation catalysis using iridium: The Cativa TM process for the manufacture of acetic acid [ J ]. Catal Today, 2000, 58( 4 ): 293 - 307.
[ 24 ] 卢朝东,杨 延. 二甲醚羰基化催化剂工业化运行分析与总结[ J ]. 大氮肥,2021,44( 3 ):200 - 204.
[1]
吴腾腾1,程晓格2,袁金林1,李臣果1. 甲醇制烯烃装置分子筛吸附器床层泄露原因分析及改进措施 [J]. 煤炭与化工, 2022, 45(1): 121-124,130..
[2]
王 平,段志钢,付忠心,张军立. 分子筛转轮处理青霉素发酵尾气应用技术研究 [J]. 煤炭与化工, 2019, 42(7): 153-155,160.
[3]
李 智1,王建英1,张向京1,王 勇2,宁原峰1,陆雅萌1. 分子筛吸附法脱除VOCs的研究进展 [J]. 煤炭与化工, 2019, 42(6): 121-125,142.
[4]
臧 飞1,牛洁平2,张军立1. 制药行业低浓度无组织有机废气排放的达标治理实践研究 [J]. 煤炭与化工, 2019, 42(6): 155-157,160.
[5]
王子源. Friedel-Crafts羟烷基化反应的研究 [J]. 煤炭与化工, 2015, 38(6): 98-100.
[6]
王 磊. HY分子筛催化合成对乙酰氨基酚的工艺研究 [J]. 煤炭与化工, 2014, 37(8): 82-84.
[7]
赵 玲. 煤气化空分制氧装置分子筛纯化系统顺控逻辑报警优化 [J]. 煤炭与化工, 2014, 37(11): 96-99,145.
[8]
赵高峰. 哌嗪合成工艺研究 [J]. 煤炭与化工, 2013, 36(4): 89-91.