| [ 1 ] Sahinkaya E, Dursun N. Use of Elemental Sulfur and Thiosulfate as Electron Sources for Water Denitrification[ J ]. Bioprocess and Biosystems Engineering, 2015, 38 ( 3 ).
[ 2 ] Fu C, Li J, Lv X, et al. Operation Performance and Microbial Community of Sulfur-based Autotrophic Denitrification Sludge with Different Sulfur Sources[ J ]. Environmental Geochemistry and Health: Official Journal of the Society for Environmental Geochemistry and Health, 2020, 42 ( 3 ).
[ 3 ] 刘 凡. 硫铁矿自养反硝化性能及条件优化研究[ D ]. 北京:中国地质大学,2018.
[ 4 ] 吴芳磊. 基于硫自养反硝化的深度除磷脱氮研究[ D ]. 哈尔滨:哈尔滨工业大学,2015.
[ 5 ] 邬琴琴,代群威,韩林宝,等. 脱氮硫杆菌的筛选及其对锶离子的矿化作用[ J ]. 核化学与放射化学,2017,39( 2 ):187 - 192.
[ 6 ] 张晨晓,郭延凯,杜海峰,等. 硫自养反硝化反应器脱氮特性研究[ J ]. 河北科技大学学报,2016,37( 1 ):96 - 101.
[ 7 ] Fajardo C, Mora M, Fernández I, et al. Cross Effect of Temperature, Ph and Free Ammonia on Autotrophic Denitrification Process with Sulphide as Electron Donor[ J ]. Chemosphere, 2014, 97.
[ 8 ] Yaofeng L, Jianbo G, Haibo L, et al. Effect of Dissolved Oxygen on Simultaneous Removal of Ammonia, Nitrate and Phosphorus Via Biological Aerated Filter with Sulfur and Pyrite as Composite Fillers.[ J ]. Bioresource Technology, 2020, 296.
[ 9 ] Qambrani NA, Oh S. Effect of Dissolved Oxygen Tension and Agitation Rates on Sulfur-utilizing Autotrophic Denitrification: Batch Tests[ J ]. Applied Biochemistry and Biotechnology, 2013, 169 ( 1 ).
[ 10 ] 牛建敏,李睿华. 理化因素对脱氮硫杆菌自养反硝化的影响[ J ]. 中国环境科学,2010,30( 1 ):76 - 81.
[ 11 ] Zhou W, Liu X, Dong X, et al. Sulfur-based Autotrophic Denitri-
fication From the Micro-polluted Water[ J ]. Journal of Environmental Sciences, 2016, 44 ( 6 ): 180 - 188.
[ 12 ] Yaxian X, Nan C, Chuanping F, et al. Sulfur-based Autotrophic
Denitrification with Eggshell for Nitrate-contaminated Synthetic Groundwater Treatment. [ J ]. Environmental Technology, 2016, 37 ( 24 ).
[ 13 ] 李芳芳,施春红,李海波. 邻苯二甲酸氢钾对硫自养反硝化工艺的影响研究[ J ]. 环境科学与管理,2020,45( 1 ):79 - 83.
[ 14 ] Capua FD, Ahoranta SH, Papirio S, et al. Impacts of Sulfur Source and Temperature on Sulfur-driven Denitrification By Pure and Mixed Cultures of Thiobacillus[ J ]. Process Biochemistry, 2016,
51( 10 ).
[ 15 ] Li Y, Wang Y, Wan D, et al. Pilot-scale Application of Sulfur-li-
mestone Autotrophic Denitrification Biofilter for Municipal Tailwater Treatment: Performance and Microbial Community Structure[ J ]. Bioresource Technology, 2020, 300.
[ 16 ] Ruihua L, Jianmin N,Xinmin Z, et al. Simultaneous Removal of
Nitrogen and Phosphorus From Wastewater By Means of Fes-based Autotrophic Denitrification[ J ]. Water Science and Technology, 2013, 67( 12 ).
[ 17 ] Cui Y, Guo G, Biswal BK, et al. Investigation on Sulfide-oxidizing Autotrophic Denitrification in Moving-bed Biofilm Reactors: an Innovative Approach and Mechanism for the Process Start-up[ J ]. International Biodeterioration & Biodegradation, 2019, 140.
[ 18 ] Zou G, Papirio S, Lakaniemi A, et al. High Rate Autotrophic Den-
itrification in Fluidized-bed Biofilm Reactors[ J ]. Chemical Engineering Journal, 2016, 284.
[ 19 ] 袁 莹,周伟丽,王 晖,等. 不同电子供体的硫自养反硝化脱氮实验研究[ J ]. 环境科学,2013,34( 5 ):1 835 - 1 844.
[ 20 ] Rui L, Chuanping F, Weiwu H, et al. Woodchip-sulfur Based He-
terotrophic and Autotrophic Denitrification (wshad) Process for Nitrate Contaminated Water Remediation[ J ]. Water Research, 2016, 89.
[ 21 ] Cui Y, Biswal BK, Loosdrecht MCV, et al. Long Term Performance and Dynamics of Microbial Biofilm Communities Performing Sulfur-oxidizing Autotrophic Denitrification in a Moving-bed Biofilm Reactor[ J ]. Water Research, 2019, 166.
[ 22 ] Sahinkaya E, Dursun N, Kilic A, et al. Simultaneous Heterotrophic and Sulfur-oxidizing Autotrophic Denitrification Process for Drinking Water Treatment: Control of Sulfate Production[ J ]. Water Research, 2011, 45( 20 ).
[ 23 ] Liu H, Jiang W, Wan D, et al. Study of a Combined Heterotrophic and Sulfur Autotrophic Denitrification Technology for Removal of Nitrate in Water[ J ]. Journal of Hazardous Materials, 2009, 169( 1 ).
[ 24 ] 王巧茹,史 旋,宋 伟,等. 碳源强化下的硫自养/异养反硝化协同作用[ J ]. 环境工程学报,2019,13( 11 ):2 593 - 2 600.
[ 25 ] Sun S, Liu J, Zhang M, et al. Thiosulfate-driven Autotrophic and Mixotrophic Denitrification Processes for Secondary Effluent Treatment: Reducing Sulfate Production and Nitrous Oxide Emission[ J ]. Bioresource Technology, 2020, 300.
[ 26 ] Wang T, Guo J, Song Y, et al. Efficient Nitrogen Removal in Sepa-
rate Coupled-system of Anammox and Sulfur Autotrophic Denitrification with a Nitrification Side-branch Under Substrate Fluctuation[ J ]. Science of the Total Environment, 2019, 696.
[ 27 ] 方文烨,李 祥,黄 勇,等. 单质硫自养短程反硝化耦合厌氧氨氧化强化脱氮[ J ]. 环境科学,2020,41( 8 ):3 699 - 3 706.
[ 28 ] Chen F, Li X, Yuan Y, et al. An Efficient Way to Enhance the Total Nitrogen Removal Efficiency of the Anammox Process By S~0-based Short-cut Autotrophic Denitrification[ J ]. Journal of Environmental Sciences, 2019, 81( 7 ): 214 - 224.
[ 29 ] Miao L, Zhang Q, Wang S, et al. Characterization of Eps Compos-
itions and Microbial Community in an Anammox Sbbr SystemTreating Landfill Leachate[ J ]. Bioresource Technology, 2018, 249.
[ 30 ] Yujie Q, Chenglong W, Buqing C, et al. Short Term Performance and Microbial Community of a Sulfide-based Denitrification and Anammox Coupling System at Different N/s Ratios[ J ]. Bioresource Technology, 2019, 294.
[ 31 ] Jin R, Yang G, Yu J, et al. The Inhibition of the Anammox Process: a Review[ J ]. Chemical Engineering Journal, 2012, 197.
[ 32 ] 胡位军,刘昌文,关万里. 浅谈人工湿地处理生活污水的作用机理与优势[ J ]. 绿色科技,2014( 3 ):65 - 66.
[ 33 ] 任 婕,林晓虎,刘 伟,等. 硫自养反硝化强化人工湿地深度处理冷轧废水[ J ]. 环境工程,2018,36( 4 ):6 - 10,71.
[ 34 ] Park J, Kim S,Delaune RD, et al. Enhancement of Nitrate Removal in Constructed Wetlands Utilizing a Combined Autotrophic and Heterotrophic Denitrification Technology for Treating Hydroponic Wastewater Containing High Nitrate and Low Organic Carbon Concentrations[ J ]. Agricultural Water Management, 2015, 162.
[ 35 ] 陈 涛,王 翔,朱召军,等. 垂直流湿地用于产业集聚区污水厂尾水脱氮处理[ J ]. 工业水处理,2019,39( 11 ):101 - 103,112.
[ 36 ] N BA, C ZT. Performance of a Constructed Wetland with a Sulfur/
limestone Denitrification Section for Wastewater Nitrogen Removal.[ J ]. Environmental Science & Technology, 2003, 37(8).
[ 37 ] Chen D, Wang H, Yang K, et al. Performance and Microbial Com-
munities in a Combined Bioelectrochemical and Sulfur Autotrophic Denitrification System at Low Temperature[ J ]. Chemosphere, 2018, 193.
[ 38 ] 王旭峰,丛培龙,何培弘,等. 电流强度对三维电极生物膜与硫自养耦合脱氮的影响[ J ]. 中国给水排水,2019,35( 23 ):22 - 27.
[ 39 ] Wang H, Qu J. Combined Bioelectrochemical and Sulfur Autotro-
phic Denitrification for Drinking Water Treatment[ J ]. Water
Research, 2003, 37(15).
[ 40 ] Wang K, Zhang S, Chen Z, et al. Interactive Effect of Electrode Potential on Pollutants Conversion in Denitrifying Sulfide Removal Microbial Fuel Cells[ J ]. Chemical Engineering Journal, 2018, 339.
[ 41 ] 张文静,黄 勇,毕 贞,等. ANAMMOX菌铁自养反硝化工艺的稳定性[ J ]. 环境科学,2019,40( 7 ):3 201 - 3 207.
[ 42 ] 周彦卿,郝瑞霞,刘思远,等. 新型硫铁复合填料强化再生水深度脱氮除磷[ J ]. 环境科学,2017,38( 10 ):4 309 - 4 315.
[ 43 ] Torrentó C, Cama J, Urmeneta J, et al. Denitrification of Ground-
water with Pyrite and Thiobacillus Denitrificans[ J ]. Chemical Geology, 2010, 278( 1 ).
[ 44 ] Wang W, Wei D, Li F, et al. Sulfur-siderite Autotrophic Denitri-
fication System for Simultaneous Nitrate and Phosphate Removal: From Feasibility to Pilot Experiments[ J ]. Water Research, 2019, 160.
[ 45 ] 毕建培. 硫酸盐还原与反硝化脱硫工艺耦合及碳氮硫去除效能研究[ D ]. 哈尔滨:哈尔滨工业大学,2009.
[ 46 ] N LG, R SK, H CG, et al. Integration of Sulphate Reduction, Auto-
trophic Denitrification and Nitrification to Achieve Low-cost Excess Sludge Minimisation for Hong Kong Sewage.[ J ]. Water Science and Technology: a Journal of the International Association on Water Pollution Research, 2006, 53( 3 ).
[ 47 ] Wang J, Lu H, Chen G, et al. A Novel Sulfate Reduction, Autotro-
phic Denitrification, Nitrification Integrated (sani) Process for Saline Wastewater Treatment[ J ]. Water Research, 2009, 43( 9 ).
[ 48 ] Lu H, Wu D, Jiang F, et al. The Demonstration of a Novel Sulfur Cycle-based Wastewater Treatment Process: Sulfate Reduction, Autotrophic Denitrification, and Nitrification Integrated (sani?) Biological Nitrogen Removal Process[ J ]. Biotechnology and Bioengineering, 2012, 109(11). |