高精度矿用粉尘监测系统的数据采集模块设计
杨 敏,张全柱,赵紫梅
华北科技学院 信息与控制技术研究所,北京 东燕郊 065201
Design of data acquisition module for high-precision mine dust monitoring system
Yang Min, Zhang Quanzhu, Zhao Zimei
nstitute of Information and Control Technology, North China University of Science and Technology, Beijing 065201, China
摘要 为了防止发生煤矿粉尘爆炸,改善工人的工作环境,针对粉尘监测系统的高精度要求,对其数据采集模块进行设计。数据采集模块选用芯片AD8249构成差分输入信号电桥电路,能够进行温度补偿,消除温度波动引起的粉尘传感器输出电压误差,采用低频测量A/D转换器Σ-ΔADC芯片AD7712实现对粉尘传感器探头的高精度采集,再对采集的数据进行傅里叶变换,进一步提高精度。测试结果表明,该方案有效且可行,提高了粉尘监测系统的测量精度,具有一定的实用性。
关键词 :
粉尘监测系统 ,
数据采集 ,
傅里叶变换 ,
粉尘浓度
Abstract :In order to prevent the occurrence of dust explosion in coal mines and improve the working environment of workers, the data acquisition module of the dust monitoring system was designed according to the high accuracy requirements of the dust monitoring system. The data acquisition module selected the chip AD8249 to form a differential input signal bridge circuit, which can perform temperature compensation and eliminate the dust sensor output voltage error caused by temperature fluctuations. The low-frequency measurement A / D converter Σ-ΔADC chip AD7712 was used to achieve a high level of dust sensor probes. Accurate acquisition and then Fourier transformed the collected data to further improve the accuracy. Test results showed that the scheme was effective and feasible, improved the measurement accuracy of the dust monitoring system, with certain practicability.
Key words :
dust monitoring system
data acquisition
Fourier transform
dust concentration
作者简介 : 杨 敏( 1995— ),女,陕西咸阳人,硕士研究生。
[ 1 ] 周全超,杨胜强,蒋孝元,等. 综掘工作面粉尘分布规律及通风除尘优化研究[ J/OL ]. 工矿自动化,2019( 11 ):1 - 8.
[ 2 ] 赵 斌. 基于静电感应的煤矿井下粉尘传感器设计研究[ J ].技术应用与研究,2019( 14 ):128 - 129.
[ 3 ] 刘平英,谭智强,王玉芳. 一种多维度数据采集大气污染物探空仪设计[ J ]. 信息技术,2019,43( 9 ):24 - 28.
[ 4 ] 王留留,沈晓波. 简易粉尘浓度监测系统设计[ J ]. 电子世界,2018( 12 ):199 - 200.
[ 5 ] 李德文,陈建阁,安文斗,等. 电荷感应式粉尘浓度监测技术[ J ]. 能源与环保,2018,40( 8 ):5 - 9.
[ 6 ] 王礼平. 煤矿粉尘浓度监测系统研究与实现[ D ]. 西安:西安建筑科技大学,2018.
[ 7 ] 张宇峰,黄科岩,曹 健. 简易基于单片机的空气粉尘和温湿度监测系统设计[ J ]. 中国战略新兴产业,2018( 40 ):133.
[ 8 ] 曲直远. 基于单片机的室内粉尘监控系统[ J ]. 电子测试,2019( 13 ):43 - 44.
[ 9 ] 周美灵,张保星. 基于数字传感器的断轨轨道衡数据采集系统设计[ J ]. 铁道技术监督,2019,47( 9 ):56 - 59.
[ 10 ] 常海龙,张 状,闰加胜,等. 液体质量流量计放大电路温度漂移补偿方案[ J ]. 仪表技术与传感器,2014( 9 ):28 - 30.
[ 11 ] 李 文,张志永,吕 赫,等. 一种高精度电导率水质检测传感器的设计[ J ].河南科技大学学报(自然科学版),2019,40( 5 ):19 - 24,5.
[ 12 ] 韩 宾,易志强,江 虹,等. 一种高精度多通道实时数据采集系统设计[ J ]. 仪表技术与传感器,2019( 9 ):42 - 45.
[ 13 ] 苗 壮. 基于工业锅炉的远程物联网监测数据采集终端分析[ J ]. 工业加热,2019,48( 4 ):56 - 58,64.
[ 14 ] 周 浩,段发阶,邵 毅,等. 基于串行通信的传感器自动识别与通用型浮标数据采集系统设计[ J/OL ]. 海洋科学,2019( 11 ):1 - 8.
[ 15 ] Mukil Alagirisamy,Chee-Onn Chow,Kamarul Ariffin Bin Noordin. Compressive sensing with perceptron based routing for varying traffic intensity based on capsule networks[ J ]. Computers and Electrical Engineering, 2019, 79.
[ 16 ] 岳 洋,焦运良,邢计元. 基于MSP430的智能数据采集系统[ J ]. 信息技术与网络安全,2019,38( 10 ):73 - 77.
[ 17 ] 徐 磊,房立清,李 旭,等. MEMS加速度传感器的数据采集系统设计[ J ]. 仪表技术与传感器,2019( 9 ):73 - 76,95.
[ 18 ] Sajith Vellappally,Abdulaziz A. Al Kheraif, Darshan Devang Divakar, Santhosh Basavarajappa,Sukumaran Anil, Hassan Fouad. Tooth implant prosthesis using ultra low power and low cost crystalline carbon bio-tooth sensor with hybridized data acquisition algorithm[ J ]. Computer Communications, 2019, 148.
[ 19 ] 王 伟,魏 柯,苏 玉. 基于FPGA的光纤传感器高速数据采集系统设计[ J ]. 激光杂志,2019,40( 8 ):102 - 106.
[ 20 ] 邹曜璞,张 磊,韩昌佩,等. 傅里叶光谱仪高精度光谱定标研究[ J ]. 光谱学与光谱分析,2018,38( 4 ):1 268 - 1 275.
[1]
李 飞. 综采工作面二次降尘技术及应用效果分析 [J]. 煤炭与化工, 2020, 43(1): 122-125.
[2]
曲来有. 裕泰煤矿综放工作面注水防尘技术研究与应用 [J]. 煤炭与化工, 2019, 42(11): 103-106.
[3]
刘 炜. 煤矿工作场所空气中粉尘浓度检测 [J]. 煤炭与化工, 2017, 40(3): 154-156.
[4]
刘文国. 基于Wince 6.0 嵌入式系统的气象站数据采集 [J]. 煤炭与化工, 2015, 38(6): 115-117.
[5]
张小军. Labview在矿井提升机检测系统中的应用 [J]. 煤炭与化工, 2015, 38(6): 125-127,130.
[6]
王伟峰. 自动化综合防尘技术在岩巷掘进中的应用 [J]. 煤炭与化工, 2015, 38(6): 73-74,77.
[7]
孙 建,李莎莎. 降低煤矿井下作业场所粉尘浓度研究 [J]. 煤炭与化工, 2015, 38(12): 124-126.
[8]
杨彩晓. 和成煤矿三维地震勘探的研究 [J]. 煤炭与化工, 2014, 37(8): 124-126.
[9]
武瑞英. 湿式喷射混凝土工艺在章村矿的应用 [J]. 煤炭与化工, 2014, 37(4): 80-82.
[10]
任存良. 采掘面高效除尘技术的研究与实践 [J]. 煤炭与化工, 2013, 36(3): 47-49.