| [ 1 ] Teng Bao, Jingbo Zhao, Jing Li, et al. n-Butanol and ethanol pro-
duction from cellulose by Clostridium cellulovorans[ J ]. Bioresour-
ce Technology, 2019, 285 ( 4 ): 960 - 8 524.
[ 2 ] Lütke-Eversloh T. Application of new metabolic engineering tools for Clostridium acetobutylicum[ J ]. Appl Microbiol Biotechnol, 2014, 98 ( 13 ) : 5 823 - 5 837.
[ 3 ] Zhao J, Lu C, Chen CC, et al. Biological production of butanol andhigher alcohols. In: Yang S T, El-Enshasy H A, Thongchul N (Eds.), Bioprocessing Technologies in Biorefinery for Sustainable Production of Fuels, Chemicals, and Polymers[ J ]. John Wiley & Sons, New York, 2013 ( 54 ): 235 - 261.
[ 4 ] HB Aditiya, TMI Mahlia, WT Chong, et al. Sebayang, second gen-
eration bioethanol production: a critical review[ J ]. Renew Sustain Energy Rev, 2016 ( 66 ): 631 - 653.
[ 5 ] Moumita Basu, Vishal Kumar, Pratyoosh Shukla. Recombinant
Approaches for Microbial Xylanases: Recent Advances and Perspectives[ J ]. October Current Protein and Peptide Science, 2018( 19 ): 87 - 99.
[ 6 ] Motta F L, Andrade C C P, Santana M H A. A Review of Xylanase Production by the Fermentation of Xylan: Classification, Characterization and Applications. In: Sustainable Degradation of Lignocellulosic Biomass - Techniques[ J ]. Applications and Commercialization Eds, 2013 ( 28 ): 251 - 275.
[ 7 ] Yoo M, Bestel - Corre G, Croux C, et al. A quantitative system-
scale characterization of the metabolism of Clostridium acetobuty-
licum[ J ]. MBio, 2015( 6 ): 1 808 - 1 815.
[ 8 ] Shang-Tian Yang. Engineering Clostridia for n-Butanol Produc-
tion from Lignocellulosic Biomass and CO2[ J ]. Biochemical Conversion, 2017( 23 ): 1 597 - 1 610.
[ 9 ] 林有胜,王 竞. 玉米秸秆预处理后酶水解及丁醇发酵[ J ].
安徽农业科学,2009,37(22):10 342 - 10 344.
[ 10 ] F Raganati G Olivieri, P Gotz A Marzocchella, P Salatino. Buta-
nol production from hexoses and pentoses by fermentation of Clostridium acetobutylicum[ J ], Anaerobe, 2015 ( 34 ) : 146 - 155. [ 11 ] S M Gaida, A Liedtke, A H Jentges, et al. Jennewein, Metabolic engineering of Clostridium cellulolyticum for the production of n-butanol from crystalline cellulose, Microb[ J ]. Cell Fact, 2016
( 15 ): 6 - 11.
[ 12 ] G C Xu, J C Ding, R Z Han, et al. Enhancing cellulose accessibility of corn stover by deep eutectic solvent pretreatment for butanol fermentation[ J ]. Bioresour Technol, 2016 ( 203 ) : 364 - 369.
[ 13 ] F Raganati, G Olivieri, P Gotz A, et al. Butanol production from hexoses and pentoses by fermentation of Clostridium acetobuty-
licum[ J ]. Anaerobe, 2015 ( 34 ) : 146 - 155.
[ 14 ] S M Gaida, A Liedtke, A H Jentges, et al. Metabolic engineering of Clostridium cellulolyticum for the production of n-butanol from crystalline cellulose[ J ]. Microb Cell Fact, 2016 ( 15 ): 6 - 11.
[ 15 ] G C Xu, J C Ding, R Z Han J J, et al. Enhancing cellulose accessi-
bility of corn stover by deep eutectic solvent pretreatment for butanol fermentation, Bioresour[ J ]. Technol, 2016 ( 203 ) : 364 - 369.
[ 16 ] L R Lynd, W H van Zyl, J E McBride, et al. Consolidated biopro-
cessing of cellulosic biomass: an update, curr. Opin[ J ]. Biotechnol, 2005, 16 ( 5 ) : 577 - 583.
[ 17 ] F Salimi, R Mahadevan. Characterizing metabolic interactions in a clostridial coculture for consolidated bioprocessing[ J ]. BMC Biotechnol, 2013 ( 13 ): 95 - 103.
[ 18 ] F Salimi, K Zhuang, R Mahadevan. Genome-scale metabolic mo-
deling of a clostridial co-culture for consolidated bioprocessing[ J ]. Biotechnol, 2010, 5 ( 7 ) : 726 - 738.
[ 19 ] Yang X, Xu M, Yang S T. Metabolic and process engineering of
Clostridium cellulovorans for biofuel production from cellulose[ J ]. Metab Eng, 2015 ( 32 ) : 39 - 48.
[ 20 ] Raynaud C, Meynial-Salles I, Soucaille P. Reviving the Weizmann process for commercial n-butanol production[ J ]. Nat, Commun, 2018( 9 ): 3 682.
[ 21 ] Zhang J, Zong W M, Hong W, et al. Exploiting endogenous CRISPR
-Cas system for multiplex genome editing in Clostridium tyrobutyricum and engineer the strain for high-level butanol production[ J ]. Metab Eng. 2018 ( 47 ) : 49 - 59.
[ 22 ] Wen Z Q, Minton N P, Zhang Y, et al. Enhanced solvent produ-
ction by metabolic engineering of a twin-clostridial consortium[ J ]. Tab Engc, 2017 ( 39 ): 38 - 48.
[ 23 ] Joseph RC, Kim NM, Sandoval N R. Recent Developments of the synthetic biology Toolkit for Clostridium[ J ]. Front. Microbiol, 2018( 9 ): 154. |