| 1 ] Zhang L, Tang S, He F, et al. Highly efficient and selective capture of heavy metals by poly(acrylic acid) grafted chitosan and biochar composite for wastewater treatment [ J ]. Chemical Engineering Journal, 2019( 378 ): 122 - 215.
[ 2 ] Li N, Yuan M, Lu S, et al. Highly effective removal of nickel ions from wastewater by calcium-iron layered double hydroxide [ J ]. Frontiers in Chemistry, 2023( 10 ): 2 296 - 2 646.
[ 3 ] Zhao C, Wang C, Wang Z, et al. Study of the removal of Pb(ii) and Ni(ii) from aqueous solution by new nano-Mg(OH)2/fly ash adsorbent materials[ J ]. New Journal of Chemistry, 2023, 47( 23 ): 10 952 - 10 966.
[ 4 ] Hama Aziz K H, Mustafa F S, Omer K M, et al. Heavy metal pollu-
tion in the aquatic environment: efficient and low-cost removal approaches to eliminate their toxicity: a review[ J ]. RSC Advances, 2023, 13( 26 ): 17 595 - 17 610.
[ 5 ] Jannat J N, Mia M Y, Jion M M M F, et al. Pollution trends and ecological risks of heavy metal(loid)s in coastal zones of Bangladesh: A chemometric review[ J ]. Marine Pollution Bulletin, 2023( 191 ): 114 - 160.
[ 6 ] Bian Y, Zhang F, Liu Q, et al. Simultaneous removal capacity and selectivity of Cd(II) and Ni(II) by KMnO4 modified coconut shell and peach kernel biochars[ J ]. Journal of Water Process Engineering, 2024( 65 ): 105 - 162.
[ 7 ] Adhikari S, Moon E, Paz-Ferreiro J, et al. Comparative analysis of biochar carbon stability methods and implications for carbon credits [ J ]. Science of The Total Environment, 2024( 914 ): 169 - 207.
[ 8 ] Wang J, Guo X. Adsorption kinetics and isotherm models of heavy metals by various adsorbents: An overview [ J ]. Critical Reviews in Environmental Science and Technology, 2023, 53( 21 ): 1 837 - 1 865.
[ 9 ] Yang Q, Wu L, Zheng Z, et al. Sorption of Cd(II) and Ni(II) on bi-
ochars produced in nitrogen and air-limitation environments with various pyrolysis temperatures: Comparison in mechanism and performance[ J ]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2022( 635 ): 128 - 200.
[ 10 ] 余正洋,龚为进,黄做华,等. 改性农业废弃物生物炭吸附水中新污染物研究进展[ J ]. 河南化工,2025,42( 2 ):4 - 11.
[ 11 ] Abolfazli Behrooz B, Oustan S, Mirseyed Hosseini H, et al. The i-
mportance of presoaking to improve the efficiency of MgCl2-modified and non-modified biochar in the adsorption of cadmium[ J ]. Ecotoxicology and Environmental Safety, 2023( 257 ): 114 - 132.
[ 12 ] Zhang D, Zhang K, Hu X, et al. Cadmium removal by MgCl2 mod-
ified biochar derived from crayfish shell waste: Batch adsorption, response surface analysis and fixed bed filtration[ J ]. Journal of Hazardous Materials, 2021( 408 ): 124 - 160.
[ 13 ] Xiao R, Yang W, Cong X, et al. Thermogravimetric analysis and r-
eaction kinetics of lignocellulosic biomass pyrolysis [ J ]. Energy, 2020( 201 ): 145 - 150.
[ 14 ] Liu D, Yu Y, Long Y, et al. Effect of MgCl2 loading on the evolut-
ion of reaction intermediates during cellulose fast pyrolysis at 325 ℃[ J ]. Proceedings of the Combustion Institute, 2015, 35( 2 ): 2 381 - 2 388.
[ 15 ] 单德鑫,李 俊,张昕悦,等. 一种吸附重金属离子的改性生物炭及其制备方法,CN118767876A [ P ].
[ 16 ] Zhang J, Hou D, Shen Z, et al. Effects of excessive impregnation, magnesium content, and pyrolysis temperature on MgO-coated watermelon rind biochar and its lead removal capacity [ J ]. Environmental Research, 2020( 183 ): 109 - 152.
[ 17 ] Tran D-T, Pham T-D, Dang V-C, et al. A facile technique to pre-
pare MgO-biochar nanocomposites for cationic and anionic nutrient removal [ J ]. Journal of Water Process Engineering, 2022( 47 ): 102 - 132.
[ 18 ] Yin Y, Xu Y, Zhao Z, et al. Nanoscale MgO confined in magnetic biochar via two-step pyrolysis for enhanced phosphate adsorption [ J ]. Separation and Purification Technology, 2024( 339 ): 126 - 154.
[ 19 ] 赵振兴,白丽梅,王美佳,等. 六水氯化镁碱性调控煅烧制备活性氧化镁 [ J ]. 有色金属(冶炼部分),2024( 7 ):133
- 142.
[ 20 ] Tan M, Li Y, Chi D, et al. Efficient removal of ammonium in aque-
ous solution by ultrasonic magnesium-modified biochar [ J ]. Chemical Engineering Journal, 2023( 461 ): 142 - 172.
[ 21 ] 杨 雪,张士秋,侯其东,等. 生物炭的制备及其镁改性对污染物的吸附行为研究 [ J ]. 环境科学学报,2018,38( 10 ):4 032 - 4 043.
[ 22 ] 扶海超,赵 鹏,郝沛鑫,等. 一种重金属吸附材料及其制备方法和应用,CN118874443A [ P ].
[ 23 ] 叶沁辉,陈 红,于 鑫,等. 沼渣生物炭的制备及资源化利用研究进展[ J ]. 化工进展,2023,42( 12 ):6 554 - 6 566.
[ 24 ] 马林峰,欧爱彤,李志远,等. Na2S改性生物炭高效吸附重金属离子:制备及吸附机理 [ J ]. 化工学报,2024,75( 7 ):2 594 - 2 603.
[ 25 ] 汪 怡,李 莉,宋豆豆,等. 玉米秸秆改性生物炭对铜、铅离子的吸附特性[ J ]. 农业环境科学学报,2020,39( 6 ):1 303 - 1 313.
[ 26 ] Yi Y, Huang Z, Lu B, et al. Magnetic biochar for environmental remediation: A review [ J ]. Bioresour Technol, 2020( 298 ): 122 - 168.
[ 27 ] Yin G, Tao L, Chen X, et al. Quantitative analysis on the mechani-
sm of Cd2+ removal by MgCl2-modified biochar in aqueous solutions[ J ]. Journal of Hazardous Materials, 2021( 420 ): 126 - 187.
[ 28 ] 嵇梦圆,胡逸文,梁 程,等. 农林废弃物基生物炭对重金属铅和镉的吸附特性 [ J ]. 生态与农村环境学报,2020,36( 1 ):106 - 114.
[ 29 ] Hao P, Fu H, Ma S, et al. MgO-embedded S-doped porous bioch-
ar composites for efficient removal Cd(II) and Pb(II) in water: DFT studies and mechanistic insights[ J ]. Separation and Purification Technology, 2025( 363 ): 132 - 179.
[ 30 ] 周丹丹,冯金华,陈 龙,等. 一种利用氯化镁改性增强生物炭吸附铜离子的方法,CN115672276A [ P ].
[ 31 ] Zhao J, Wang L, Chu G. Comparison of the Sorption of Cu(II) and Pb(II) by Bleached and Activated Biochars: Insight into Complex-
ation and Cation-π Interaction [ J ]. Agronomy, 2023, 13( 5 ): 12 - 82.
[ 32 ] Qi X, Yin H, Zhu M, et al. MgO-loaded nitrogen and phosphorus self-doped biochar: High-efficient adsorption of aquatic Cu2+, Cd2+, and Pb2+ and its remediation efficiency on heavy metal contaminated soil [ J ]. Chemosphere, 2022( 294 ): 137 - 163.
[ 33 ] 吴文卫,周丹丹. 生物炭老化及其对重金属吸附的影响机制 [ J ]. 农业环境科学学报,2019,38( 1 ):7 - 13.
[ 34 ] Deng Y, Li X, Ni F, et al. Synthesis of Magnesium Modified Bioc-
har for Removing Copper, Lead and Cadmium in Single and Binary Systems from Aqueous Solutions: Adsorption Mechanism [ J ]. Water, 2021, 13( 5 ): 599 - 605.
[ 35 ] 于长江. 生物炭复合材料的制备及其对重金属离子的吸附行为和机制研究[ J ]. 昆明理工大学,2024( 5 ):19 - 25.
[ 36 ] 石清亮,莫贞林,张 华,等. 一种氯化镁改性桉木生物炭吸附剂的制备方法及应用,CN113856623A [ P ].
[ 37 ] 李海红,张 笑. 超声预处理对活性炭材料结构的影响及其表征[ J ]. 材料科学与工程学报,2016,34( 6 ):983 - 987.
[ 38 ] 徐 欣. 不同老化处理对生物炭吸附Cd(Ⅱ)的影响及机理研究 [ D ]. 2020.
[ 39 ] Long Y, Zhu N, Zhu Y, et al. Hydrochar drives reduction in bioav-
ailability of heavy metals during composting via promoting humification and microbial community evolution [ J ]. Bioresour Technol, 2024( 395 ): 130 - 135.
[ 40 ] 王申宛,郑晓燕,校 导,等. 生物炭的制备、改性及其在环境修复中应用的研究进展[ J ]. 化工进展,2020,39( S2 ):352 - 361.
[ 41 ] Matebese F, Moutloali R M. Integrating Ultrafiltration Membranes with Flocculation and Activated Carbon Pretreatment Processes for Membrane Fouling Mitigation and Metal Ion Removal from Wastewater [ J ]. ACS Omega, 2023, 8( 10 ): 9 074 - 9 085.
[ 42 ] Si T, Chen X, Yuan R, et al. Iron-modified biochars and their ag-
ing reduce soil cadmium mobility and inhibit rice cadmium uptake by promoting soil iron redox cycling [ J ]. Journal of Environmental Management, 2024( 370 ): 122 - 148.
[ 43 ] Shen Z, Zhang J, Hou D, et al. Synthesis of MgO-coated corncob biochar and its application in lead stabilization in a soil washing residue [ J ]. Environment International, 2019( 122 ): 357 - 362.
[ 44 ] Zheng Y, Wan Y, Chen J, et al. MgO modified biochar produced through ball milling: A dual-functional adsorbent for removal of different contaminants [ J ]. Chemosphere, 2020( 243 ): 125 - 144. |