倾斜底板非对称底鼓灾变机理及灾变模式研究
贾永杰
山西工程职业学院 资源与安全工程系,山西 太原 030009
Study on disaster mechanism and disaster mode of asymmetric floor heave in inclined floor
Jia Yongjie
School of Resource and Safety Engineering, Shanxi Engineering Vocational College, Taiyuan 030009, China
摘要 深部高应力倾斜底板岩层易发生非对称底鼓灾害。采用有限元-离散元耦合数值方法(FDEM)研究倾斜底板非对称底鼓灾变机制、灾变模式,以及岩层倾角对底鼓模式的影响。结果表明:①应力驱动型底鼓灾变机制为碎胀性的渐进挤压大变形,环形切向集中应力是造成上述灾变的应力驱动源;②当倾角为15°~30°时,非对称底鼓特征明显;当倾角为45°~75°时,非对称特征减弱;当倾角为0或90°时,底板呈对称底鼓特性。
关键词 :
非对称底鼓 ,
倾斜底板岩层 ,
有限元-离散元耦合数值模拟 ,
裂隙扩展 ,
大变形
Abstract : Asymmetrical floor heave disaster is easy to occur in deep inclined floor with high in-situ stress. The combined finite-discrete element numerical method (FDEM) was used to study the mechanism and mode of asymmetric floor heave disaster in inclined floor strata, and the influence of dip angle was also investigated. The results showed that: ①The stress-driven floor heave mechanism could be interpreted as the progressive fracture-swelling-squeezing deformation; annular tangential concentrated stress was the driving source;②When the dip angle wa 15°~30°, the asymmetric floor heave was obvious; when the dip angle was 45°~75°, the asymmetry feature ws weakened; however, when the inclination angle was 0° or 90°, the floor heave was symmetrical.
Key words :
asymmetric floor heave
inclined floor surrounding rock
the combined finite-discrete element method
fracture propagation
large deformation
作者简介 : 贾永杰( 1989— ),男,山西长治人,讲师。
[ 1 ] 王 军,胡存川,左建平,等. 断层破碎带巷道底臌作用机理与控制技术 [J]. 煤炭学报,2019,44( 2 ):397 - 408.
[ 2 ] 姜耀东,赵毅鑫,刘文岗,等. 深部开采中巷道底鼓问题的研究[ J ]. 岩石力学与工程学报,2004( 14 ):2 396 - 2 401.
[ 3 ] 王卫军,侯朝炯. 回采巷道底臌力学原理及控制研究新进展 [ J ]. 湘潭矿业学院学报,2003( 1 ):1 - 6.
[ 4 ] 华心祝,杨 明,刘钦节,等. 深井沿空留巷底鼓演化机理模型试验研究 [ J ]. 采矿与安全工程学报,2018,35( 1 ):1 - 9.
[ 5 ] 钟祖良,刘新荣,王道良,等. 桃树垭隧道底鼓发生机理与防治技术研究 [ J ]. 岩土工程学报,2012,34( 3 ):471 - 476.
[ 6 ] 汪 洋,唐雄俊,谭显坤,等. 云岭隧道底鼓机理分析[ J ]. 岩土力学,2010,31( 8 ):2 530 - 2 534.
[ 7 ] 邓 涛,黄 明,詹金武,等. 石林隧道底鼓灾害的特征与机理研究[ J ]. 工程地质学报,2014,22( 1 ):173 - 179.
[ 8 ] 康红普,陆士良. 巷道底鼓机理的分析[ J ]. 岩石力学与工程学报,1991( 4 ):362 - 373.
[ 9 ] 孙晓明,苗沛阳,申付新,等. 不同应力状态下深井水平层状软岩巷道底鼓机理研究[ J ]. 采矿与安全工程学报,2018,35( 6 ):1 099 - 1 106.
[ 10 ] 杨仁树,朱 晔,李永亮,等. 弱胶结软岩巷道层状底板底鼓机理及控制对策[ J ]. 采矿与安全工程学报,2020,37( 3 ):443 - 450.
[ 11 ] 邓鹏海,刘泉声,黄 兴,等. 水平层状软弱围岩破裂碎胀大变形机制有限元-离散元耦合数值模拟研究[ J ]. 岩土力学,2022,43( S2 ):508 - 523.
[ 12 ] 赵洪宝,程 辉,李金雨,等. 孤岛煤柱影响下巷道围岩非对称性变形机制研究[ J ]. 岩石力学与工程学报,2020,39( S1 ):2 771 - 2 784.
[ 13 ] 王羽扬,刘 勇,王 沉,等. 深井软岩巷道底鼓变形破坏机理及控制技术[ J ]. 地下空间与工程学报,2021,17( S1 ):411 - 418.
[ 14 ] 杨 帆,陈卫忠,郑朋强,等. 急倾斜软硬互层巷道变形破坏机制及支护技术研究[ J ]. 岩土力学,2014,35( 8 ):2 367 - 2 374.
[ 15 ] 王 炯,郭志飚,蔡 峰,等. 深部穿层巷道非对称变形机理及控制对策研究[ J ]. 采矿与安全工程学报,2014,31( 1 ):28 - 33.
[ 16 ] Deng Peng Hai, Liu Quan Sheng, Huang Xing, et al. FDEM nume-
rical modeling of failure mechanisms of anisotropic rock masses around deep tunnels [ J ]. Computers and Geotechnics, 2021, 104 535.
[ 17 ] Deng Peng Hai, Liu Quan Sheng, Lu Hai Feng. A novel joint ele-
ment parameter calibration procedure for the combined finite-discrete element method[ J ]. Engineering Fracture Mechanics, 2022, 276: 108 924.
[ 18 ] Deng Peng Hai, Liu Quan Sheng, Huang Xing, et al. Acquisition of normal contact stiffness and its influence on rock crack propagation for the combined finite-discrete element method(FDEM)[ J ]. Engineering Fracture Mechanics, 2021, 242:107 459.
[ 19 ] Mahabadi O K Investigating the influence of micro-scale hetero-
geneity and microstructure on the failure and mechanical behaviour of geomaterials [ D ]. Toronto, Canada; University of Toronto, 2012.
[ 20 ] Ajalloeian R., Lashkaripour G. R. Strength anisotropies in mudro-
cks [ J ]. Bulletin of Engineering Geology and the Environment, 2000, 59( 3 ): 195 - 199.
[ 21 ] Tien Yong Ming, Tsao Po Fong. Preparation and mechanical prop-
erties of artificial transversely isotropic rock [ J ]. International Journal of Rock Mechanics and Mining Sciences, 2000, 37( 6 ): 1 001 - 1 012.
[ 22 ] Deng Peng Hai, Liu Quan Sheng, Huang Xing, et al. Sensitivity a-
nalysis of fracture energies for the combined finite-discrete element method (FDEM) [ J ]. Engineering Fracture Mechani-
cs, 2021, 251:107 793.
[ 23 ] Munjiza A. The combined finite-discrete element method[ M ]. L-
ondon, UK:John Wiley & Sons, Ltd, 2004.
[ 24 ] Guo Xiao Xiong, Deng Peng Hai, Liu Quan Sheng, et al. Progress-
ive fracture and swelling of anisotropic rock masses around deep tunnels:a new floor heave mechanical mechanism [ J ]. Arabian Journal of Geosciences, 2022, 15( 15 ):1 325.
25 ] 王 东,姜聚宇,韩新平. 深埋均质圆形巷道围岩渐进破裂过程解析[ J ]. 中国安全科学学报,2018,28( 10 ):118 - 123.
[ 26 ] Deng Peng Hai, Liu Quan Sheng. Influence of the softening stress path on crack development around underground excavations:Insights from 2D-FDEM modelling[ J ]. Computers and Geotechnics, 2020, 117:1 - 18.
[ 27 ] 牛双建. 深部巷道围岩强度衰减规律研究[ D ]. 徐州:中国矿
业大学,2011.
[ 28 ] Armand G., Leveau F., Nussbaum C., et al. Geometry and prope-
rties of the excavation-induced fractures at the Meuse/Haute-Ma-
rne URL drifts[ J ]. Rock Mechanics and Rock Engineering, 2014, 47( 1 ): 21 - 41.
[ 29 ] 郑西贵,刘 娜,张 农,等. 深井巷道挠曲褶皱性底臌机理与控制技术[ J ]. 煤炭学报,2014,39( 3 ):417 - 423.
[1]
贾永杰. 含褶皱巷道围岩破裂碎胀大变形机理FDEM数值模拟研究 [J]. 煤炭与化工, 2023, 46(8): 15-19.
[2]
王 伟. 李村煤矿轨道大巷过断层破碎带围岩控制技术研究 [J]. 煤炭与化工, 2023, 46(12): 30-33.
[3]
屈 阳. 李村煤矿西翼胶带大巷大断面巷道围岩控制技术研究 [J]. 煤炭与化工, 2023, 46(10): 45-48.
[4]
许德轩1,樊帅鹏2. 晓南矿薄煤层切顶卸压无煤柱自成巷关键技术及现场应用 [J]. 煤炭与化工, 2021, 44(9): 1-6.
[5]
王贵平1,2. 复杂应力下穿层软岩巷道变形原因及支护技术 [J]. 煤炭与化工, 2021, 44(12): 7-11.
[6]
崔鹏伟. 深部巷道大变形破坏机理及返修支护策略分析 [J]. 煤炭与化工, 2020, 43(11): 18-20,23.
[7]
高亚伟. 基于联合支护方案的软弱煤岩巷道支护技术 [J]. 煤炭与化工, 2017, 40(5): 32-34.
[8]
张成宇. 麻家梁煤矿临空巷道围岩大变形控制技术 [J]. 煤炭与化工, 2017, 40(3): 5-10.
[9]
郭斌武. 急倾斜复合软煤巷道地压大变形特征及控制方法 [J]. 煤炭与化工, 2016, 39(4): 50-53.
[10]
白 璐. 常村煤矿470南翼辅助运输巷围岩控制技术研究与分析 [J]. 煤炭与化工, 2016, 39(2): 85-87,90.
[11]
王会军, 张志平, 张德宪. 新东矿运输大巷破坏机理及支护设计分析 [J]. 煤炭与化工, 2016, 39(1): 115-117,120.
[12]
王兆欣. 梧桐庄煤矿轨道大巷非线性大变形支护技术分析 [J]. 煤炭与化工, 2016, 39(1): 11-14.