1. Jiangsu Sopo Chemical Corporation Ltd., Zhenjiang 212006, China; 2. School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, China; 3. Jiangsu University, School of the Environment and Safety Engineering, Zhenjiang 212013, China; 4. Jiangsu Sopo Polyester Technology Corporation Ltd., Zhenjiang 212000, China
摘要 利用可再生能源将CO2转化成高附加值的燃料或化学品,是一项实现“碳中和,碳达峰”的新资源化技术,但目前高性能电催化CO2转化的催化剂研发,仍然是一项热点问题。设计具有“类珊瑚状”结构的多级孔氮掺杂碳气凝胶(N-CA)作为优化气体传质的碳载体,利用非共价固定技术,将酞菁钴(CoPc)稳定于气凝胶骨架的表面,以实现活性位点和导电碳骨架稳定结合。CoPc@N-CA展现出优异的电催化CO2还原(CO2RR)活性,在较宽的电势窗口-0.5~-1.0 V vs. RHE下,对CO的选择性>80%,最高为99.05%;在-0.85 V vs. RHE电位下,CoPc@N-CA对CO的部分电流密度达到14.40 mA·cm-2,约是以商业碳黑(CB)为基底设计的CoPc@CB(3.66·mA cm-2)催化剂的4倍。内在活性分析发现,CoPc@N-CA优异的活性可归因于N-CA独特的多孔结构,这不仅促进了CO2分子的传质,有利于CO2RR反应动力学,而且有利于暴露Co活性位点,从而促进CO2RR。
Abstract:Electrocatalytic CO2 reduction into high value-added fuels or chemicals by renewable energy to achieve the “carbon neutrality and peak” is attractive, but still challenged by developing high-performance electrocatalytic catalysts for electrocatalytic CO2 reduction reaction (CO2RR). Herein, porous nitrogen-doped carbon aerogels (N-CA) with “coral-like” structure was designed as the substrate to optimize gas mass transfer, and cobalt phthalocyanine (CoPc) was stabilized on N-CA surface by non-covalent immobilization technology to obtain CoPc@N-CA, realizing the stable combination of active sites and conductive carbon skeleton. As a result, CoPc@N-CA exhibits excellent CO2RR activity, CO Faradaic efficiency (FECO) 80% at the wide potential window of -0.5 to -1.0 V vs. RHE, and the maximal FECO of 99.05%. Meanwhile, CoPc@N-CA reaches a high CO partial current density (jCO) of 14.40 mA·cm-2 at -0.85 V vs. RHE, which is close to 4 times of that of CoPc@CB (3.66 mA·cm-2), where carbon black (CB) was chosen as substrate to obtain CoPc@CB. Intrinsic activity analysis illustrates that the excellent activity of CoPc@N-CA can be attributed to the unique porous structure of N-CA, which not only promotes the mass transfer of CO2 molecules, but also facilitates the reaction kinetics of CO2RR, and exposes the active sites of Co, promoting the activity CO2RR.
[ 1 ] Sun L, Reddu V, Fisher A C, et al. Understanding and decoupling the role of wavelength and defects in light-induced degradation of metal-halide perovskites[ J ]. Energy & Environmental Science, 2020( 13 ): 374 - 403.
[ 2 ] Zhang Z, Zhu J, Chen S, et al.Transient and Persistent Room-Te-
mperature Mechanoluminescence from a White-Light Emitting AIEgen with Tricolor Emission Switching Triggered by Light[ J ]. Angew.Chem. Int. Ed, 2023( 135 ): 1 513 - 2 022.
[ 3 ] Gong S, Yang S, Wang W, et al.Solution structure of the RNA re-
cognition domain of METTL3-METTL14 N6-methyladenosine methyltransferase. Protein Cell[ J ]. Small. 2023, ( 22 ): 78 - 88.
[ 4 ] Gong S, Wang W, Zhang C, et al. Tuning the metal electronic stru-
cture of anchored cobalt phthalocyanine via dual-regulator for efficient CO2 electroreduction and Zn-CO2 batteries[ J ]. Adv. Funct. Mater. 2022( 32 ): 211 - 649.
[ 5 ] Gong S, Wang W, Lu R, et al. Mediating heterogenized nickel ph-
thalocyanine into isolated Ni-N3 moiety for improving activity and stability of electrocatalytic CO2 reduction[ J ]. Appl. Catal. B Environ, 2022( 318 ): 121 - 813.
[ 6 ] Zhu M, Chen J, Guo R, et al.Cobalt phthalocyanine coordinated to pyridine-functionalized carbon nanotubes with enhanced CO2 electroreduction[ J ]. Appl. Catal. B Environ. 2019( 251 ): 112 - 118.
[ 7 ] Corbin N, Zeng J, Williams K, et al.Simultaneous Reduction of CO2 and splitting of H2O by a single immobilized cobalt phthalocyanine electrocatalyst[ J ]. ACS Catal. 2016( 6 ): 3 092 - 3 095.
[ 8 ] Morlanes N, Takanabe K, Rodionov V. Molecular engineering of dispersed nickel phthalocyanines on carbon nanotubes for selective CO2 reduction[ J ]. Nat. Energy 2020( 5 ): 684 - 692.
[ 9 ] Zhang X, Wang Y, Gu M, et al. A general synthesis of single atom catalysts with controllable atomic and mesoporous structures[ J ]. Nat. Synth. 2022( 1 ): 658 - 667.
[ 10 ] Wu Z, Zhu P, Cullen D A, et al. Aerogels based on carbon nanom-
aterials[ J ]. J. Mater. Sci. 2016( 51 ): 9 157 - 9 189.
[ 11 ] Araby S, Qiu A, Wang R, et al.Recent advances in preparations a-
nd applications of carbon aerogels: A review[ J ]. Carbon, 2020( 163 ): 1 - 18.
[ 12 ] Lee J, Park S. Synthesis of biomass-based carbon aerogels in ene-
rgy and sustainability[ J ]. J. Carbohyd. Res. 2020( 491 ): 107 - 986.
[ 13 ] Sam D K, Sam E K, Durairaj A. Facile preparation and ultra-mic-
roporous structure of melamine-resorcinol-formaldehyde polymeric microspheres[ J ]. Chem. Commun. 2013( 49 ): 37 - 63.
[ 14 ] Zhou H, Xu S, Su H, et al. Ion-catalyzed synthesis of microporous hard carbon embedded with expanded nanographite for enhanced lithium/sodium storage[ J ]. J. Am. Chem. Soc. 2016( 138 ): 14 915 - 14 922.
[ 15 ] Yu Z, Xin S,You Y, et al. Elucidating influence of the existence f-
ormation of anchored cobalt phthalocyanine on electrocatalytic CO2-to-CO conversion[ J ]. Nano Energy, 2021( 84 ): 105 - 904.
[ 16 ] Ni W, Xue Y, Zang X, et al. Fluorine doped cagelike carbon elec-
trocatalyst: an insight into the structure-enhanced CO selectivity for CO2 reduction at high overpotential[ J ]. ACS Nano 2020( 14 ): 2 014 - 2 023.
[ 17 ] Pan Y, Lin R, Chen Y, et al. Design of single-atom Co-N5 catalytic site: a robust electrocatalyst for CO2 reduction with nearly 100% CO selectivity and remarkable stability[ J ]. J. Am. Chem. Soc. 2018( 140 ): 4 218 - 4 221.
[ 18 ] Zhang B, Gong S, Wang GCobalt-nitrogen-carbon sites on carbon aerogels for enhanced electrocatalytic CO2 activity[ J ]. Appl. Surf. Sci. 2023( 630 ): 157 - 437.
[ 19 ] Han S G, Zhang M Fu Z H, Zheng L, et al. Enzyme-inspired mic-
roenvironment engineering of a single-molecular heterojunction for promoting concerted electrochemical CO2 reduction[ J ].Adv. Mater. 2022( 34 ): 220 - 830.
[ 20 ] Lin S, Diercks C S, Zhang Y B, Kornienko N, et al. Covalent orga-
nic frameworks comprising cobalt porphyrins for catalytic CO2 reduction in water[ J ]. Science, 2015( 349 ): 1 208 - 1 213.
[ 21 ] Zhu M, Chen J, Guo R, et al. Cobalt phthalocyanine coordinated to pyridine-functionalized carbon nanotubes with enhanced CO2 electroreduction[ J ]. Appl. Catal. B- Environ. 2019( 251 ): 112 - 118.
[ 22 ] Kramer W W, McCrory C C L.Polymer coordination promotes sel-
ective CO2 reduction by cobalt phthalocyanine[ J ]. Chem. Sci. 2016( 7 ): 2 506 - 2 515.
[ 23 ] Hu X M, R-nne M H, Pedersen S U, et al.Daasbjerg, K. Enhanced Catalytic Activity of Cobalt Porphyrin in CO2 Electroreduction upon Immobilization on Carbon Materials[ J ]. Angew. Chem. Int. Ed. 2017( 56 ): 6 468 - 6 472.
[ 24 ] Zhu M, Chen J, Huang L, et al. Covalently Grafting Cobalt Porph-
yrin onto Carbon Nanotubes for Efficient CO2 Electroreduction[ J ]. Angew. Chem. Int. Ed. 2019( 58 ): 6 595 - 6 599.
[ 25 ] Marianov A N, Jiang Y. Covalent ligation of Co molecular catalyst to carbon cloth for efficient electroreduction of CO2 in water[ J ]. Appl. Catal. B- Environ. 2019( 244 ): 881 - 888.
[ 26 ] Zhu M, Ye R, Jin K. Elucidating the Reactivity and Mechanism of CO2 Electroreduction at Highly Dispersed Cobalt Phthalocyanine[ J ]. ACS Energy Lett. 2018( 3 ): 1 381 - 1 386.
[ 27 ] Kornienko N, Zhao Y, Kley C S, et al. Metal-organic frameworks for electrocatalytic reduction of carbon dioxide[ J ]. J. Am. Chem. Soc. 2015( 137 ): 14 129 - 14 135.
[ 28 ] Han N, Wang Y, Ma L, et al. Supported cobalt polyphthalocyanine for high-performance electrocatalytic CO2 reduction[ J ]. Chem 2017( 3 ):652 - 664.
[ 29 ] Morlan'es N, Takanabe K, Rodionov V. Simultaneous reduction of CO2 and splitting of H2O by a single immobilized cobalt phthalocyanine electrocatalyst[ J ]. ACS Catal. 2016( 6 ): 3 092 - 3 095.
[ 30 ] Zhang X, Wu Z, Zhang X, et al. Highly selective and active CO2 reduction electrocatalysts based on cobalt phthalocyanine/carbon nanotube hybrid structures[ J ]. Nat. Commun. 2017( 8 ): 1 - 8.
[ 31 ] Maurin A, Robert M J. Noncovalent immobilization of a molecular iron-based electrocatalyst on carbon electrodes for selective, efficient CO2-to-CO conversion in water[ J ]. J. Am. Chem. Soc. 2016( 138 ): 2 492-2 495.
[ 32 ] Zhu H L, Zheng Y Q, Shui M. Synergistic interaction of nitrogen-
doped carbon nanorod array anchored with cobalt phthalocyanine for electrochemical reduction of CO2[ J ]. ACS Appl. Energy Mater. 2020( 3 ): 3 893 - 3 901.