Research progress of remediation techniques for mercury polluted soil
Ma Xiaona 1, Wang Rui 2, Xu Shengjun 2, Wang Xiaohui 1, Zhuang Xuliang 2
1. College of Environmental Science and Engineering, Hebei University of Science and Technology, Shijiazhuang 050000, China; 2.Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100000, China
Mercury which can easily pollute the soil is widely distributed in the environment as the only liquid metal at room temperature. Mercury pollution of soil has caused serious damage to human health and environment, and aroused global attention, so the study on the restoration measures has also become a hot topic. The pollution sources, hazards and restoration measures of mercury in soil were reviewed. The technologies for remediation of Hg-contaminated soils, including thermal desorption, solidification/stabilization, chemical extraction and phytoremediation were analyzed, characteristics, feasibility and limits of each technology were summarized in the hope of providing a reference for the research and engineering practice of remediation of Hg-contaminated soil in China.
马小娜1,王 睿2,徐圣君2,王晓辉1,庄绪亮2. 汞污染土壤修复技术研究进展[J]. 煤炭与化工, 2016, 39(12): 65-70,79.
Ma Xiaona1, Wang Rui2, Xu Shengjun2, Wang Xiaohui1, Zhuang Xuliang2. Research progress of remediation techniques for mercury polluted soil. CCI, 2016, 39(12): 65-70,79.
[ 1 ] 胡月红.国内外汞污染分布状况研究综述[J]. 环境保护科学,
2008, 34(1): 38-41.
[ 2 ] 刘 娟.中国汞污染的现状及防治对策[J].应用化工, 2005, 34(7):
394-396.
[ 3 ] Cheng H, Hu Y. Mercury in municipal solid waste in China and its
control: a review[J]. Environmental science & technology, 2011,
46(2): 593-605.
[ 4 ] Rugh C L,Wilde H D,Stack N M,et al. Mercuric ion reduction
and resistance in transgenic Arabidopsis thaliana plants expressing
a modified bacterial merA gene[J]. Proceedings of the National
Academy of Sciences,1996,93(8): 3 182-3 187.
[ 5 ] Gu B,Bian Y,Miller C L,et al. Mercury reduction and complexation
by natural organic matter in anoxic environments[J]. Proceedings of
the National Academy of Sciences,2011,108(4): 1 479-1 483.
[ 6 ] 吴耀楣.中国土壤重金属污染修复技术的专利文献计量分析[J].
2013,23(3): 45-54.
[ 7 ] 李家家.超声波活化风化煤对土壤中Hg形态及土壤酶活性的
影响研究[D].山东:山东农业大学,2014.
[ 8 ] Piao H, Bishop P L. Stabilization of mercury-containing wastes using
sulfide[J].Environmental Pollution,2006,139(3):498-506.
[ 9 ] 闫双堆,卜玉山,刘利军,等.不同腐殖酸物质对土壤中汞的
固定作用及植物吸收的影响[J].环境科学学报,2007,27(1):
101-105.
[10] 晁波阳.汞污染土壤水泥固化/稳定化处理方法探究[D].兰州:
兰州大学,2014.
[11] 杨 勤,,王兴润,孟昭福,等.热脱附处理技术对汞污染土壤
的影响[J].西北农业学报,2013, 22(6): 203-208.
[12] Reddy K R,Chaparro C,Saichek R E.Removal of mercury from
clayey soils using electrokinetics[J]. Journal of Environmental
Science and Health,Part A,2003,38(2): 307-338.
[13] Ma F,Peng C,Hou D,et al. Citric acid facilitated thermal
treatment: An innovative method for the remediation of mercury
contaminated soil[J]. Journal of Hazardous Materials, 2015, 300:
546-552.
[14] Taube F,Pommer L,Larsson T,et al. Soil remediation-mercury
speciation in soil and vapor phase during thermal treatment[J].
Water,air,and soil pollution,2008,193(1-4): 155-163.
[15] 赖 莉,瞿丽雅.低温热解法修复贵州清镇地区汞重污染土壤
[D].贵阳:贵州师范大学,2008.
[16] 林 凯.严重汞污染土壤汞的淋溶特征及其淋洗修复研究[D].
贵阳: 贵州大学,2009.
[17] Brooks R R,Lee J,Reeves R D,et al. Detection of nickeliferous
rocks by analysis of herbarium specimens of indicator plants[J].
Journal of Geochemical Exploration,1977(7): 49-57.
[18] Ali H,Khan E,Sajad M A. Phytoremediation of heavy metals—
concepts and applications[J]. Chemosphere,2013,91(7): 869-881.
[19] 江桂斌,蔡亚岐,张爱茜.我国环境化学的发展与展望[J].化学
通报,2014,4:295-300.
[20] 王立辉,严超宇,王 浩,等.土壤汞污染生物修复技术研究
进展[J].生物技术通报,2016,32(2): 51-58.
[21] 刘 平,仇广乐,商立海.汞污染土壤植物修复技术研究进展
[J]. 生态学杂志,2007,26(6): 933-937.
[22] Chen J,Yang Z M. Mercury toxicity, molecular response and tolerance
in higher plants[J]. Biometals,2012,25(5): 847-857.
[23] Carrasco-Gil S,Siebner H,LeDuc D L,et al. Mercury localization
and speciation in plants grown hydroponically or in a natural
environment [J]. Environmental science & technology, 2013, 47(7):
3 082-3 090.
[24] Esteban E,Deza M J,Zornoza P. Kinetics of mercury uptake by
oilseed rape and white lupin: influence of Mn and Cu[J]. Acta
physiologiae plantarum,2013,35(7): 2 339-2 344.
[25] Kumpiene J,Bert V,Dimitriou I,et al. Selecting chemical and
ecotoxicological test batteries for risk assessment of trace
element-contaminated soils (phyto) managed by gentle remediation
options (GRO)[J]. Science of the Total Environment,2014,496:
510-522.
[26] Debeljak M,van Elteren J T,Vogel-Miku K. Development of a
2D laser ablation inductively coupled plasma mass spectrometry
mapping procedure for mercury in maize (Zea mays L.) root
cross-sections[J]. Analytica chimica acta,2013,787: 155-162.
[27] 杨肖娥,龙新宪,倪吾钟. 超积累植物吸收重金属的生理及分
子机制[J]. 植物营养与肥料学报,2002,8(1): 8-15.
[28] Ruiz O N,Alvarez D,Torres C, et al. Metallothionein expression
in chloroplasts enhances mercury accumulation and phytoremediation
capability[J]. Plant biotechnology journal,2011, 9(5): 609-617.
[29] Chen Y A,Chi W C,Trinh N N,et al. Transcriptome profiling
and physiological studies reveal a major role for aromatic amino acids
in mercury stress tolerance in rice seedlings[J]. PloS one, 2014, 9(5):
95-163.
[30] Moreno F N, Anderson C W N, Stewart R B, et al. Phytoremediation
of mercury-contaminated mine tailings by induced plant-mercury
accumulation[J]. Environmental Practice,2004,6(2): 165-175.
[31] 马 莹,骆永明,滕 应,等. 根际促生菌及其在污染土壤
植物修复中的应用[J]. 土壤学报,2013,50(5): 1 021-1 031.
[32] 陆雅海,张福锁. 根际微生物研究进展[J]. 土壤,2006,38(2):
113-121.
[33] 罗巧玉,王晓娟,林双双,等. AM 真菌对重金属污染土壤生
物修复的应用与机理[J]. 生态学报,2013, 33(13): 3 898-3 906.
[34] 胡海燕,顾宝华,冯新斌. 厌氧微生物对汞的氧化还原和甲基
化作用[A].第七届全国环境化学大会摘要集-S12 重金属污染
与修复, 2013.
[35] Dago A,Gonza lez I,Arin o C,et al. Evaluation of mercury stress
in plants from the Almaden mining district by analysis of
phytochelatins and their Hg complexes[J]. Environmental science &
technology, 2014, 48(11): 6 256-6 263.
[36] 崔丽巍,冯新斌. 汞污染土壤植物修复中转基因技术的应用
[J]. 生态学杂志,2011,30(5): 883-888.
[37] 刘钊钊,唐 浩,吴 健,等. 土壤汞污染及其修复技术研究
进展[J]. 环境工程,2013,20(5): 80-84,109.
[38] 谷春豪,许怀凤,仇广乐. 汞的微生物甲基化与去甲基化机理
研究进展[J]. 环境化学, 2013, 32(6): 926-936.
[39] Marvin-DiPasquale M, Agee J, McGowan C, et al. Methyl-mercury
degradation pathways: a comparison among three mercury-impacted
ecosystems[J]. Environmental Science & Technology, 2000, 34(23):
4 908-4 916.
[40] Pedrero Z, Bridou R, Mounicou S, et al. Transformation, localizatioand biomolecular binding of Hg species at subcellular level in
methylating and nonmethylating sulfate-reducing bacteria[J].
Environmental science & technology, 2012, 46(21): 11 744-11 751.
[41] Nagata T, Nakamura A, Akizawa T, et al. Genetic engineering of
transgenic tobacco for enhanced uptake and bioaccumulation of
mercury[J]. Biological and Pharmaceutical Bulletin, 2009, 32(9):
1 491-1 495.
[42] Park J, Song W Y, Ko D, et al. The phytochelatin transporters
AtABCC1 and AtABCC2 mediate tolerance to cadmium and mercury
[J]. The Plant Journal, 2012, 69(2): 278-288.
[43] Rugh C L, Wilde H D, Stack N M, et al. Mercuric ion reduction and
resistance in transgenic Arabidopsis thaliana plants expressing a
modified bacterial merA gene[J]. Proceedings of the National
Academy of Sciences, 1996, 93(8): 3 182-3 187.
[44] Taube F, Pommer L, Larsson T, et al. Soil remediation-mercury
speciation in soil and vapor phase during thermal treatment[J].
Water,air,and soil pollution,2008,193(1-4): 155-163.
[45] Azad M A K, Amin L, Sidik N M. Genetically engineered organisms
for bioremediation of pollutants in contaminated sites[J]. Chinese
Science Bulletin, 2014, 59(8): 703-714.
[46] Kurniati E, Arfarita N, Imai T, et al. Potential bioremediation of
mercury-contaminated substrate using filamentous fungi isolated
from forest soil[J]. Journal of Environmental Sciences, 2014, 26(6):
1 223-1 231.
[47] 杜红霞,王定勇.汞在微生物中的跨膜运输机制研究进展[J].
微生物学报,2014,54(10):1 109-1 115.
[48] 冯新斌,陈玖斌,付学吾,等.汞的环境地球化学研究进展
[J].矿物岩石地球化学通报,2013 (5): 503-530.
[49] 陈旭飞,张 池,高云华,等.蚯蚓在重金属污染土壤生物
修复中的应用潜力[J].生态学杂志,2012 ,31(11): 2 950-2 957.