| [1] Marshall A G, Rodgers R P. Petroleomics.The next grand challenge
for chemical analysis[J]. Accounts of Chemical Research, 2004, 37
(1): 53-59.
[2] 生物信息学.智能化算法及其应用[M]. 化学工业出版社, 2006.
[3] Stenson A C,Marshall A G,Cooper W T. Exact masses and
chemical formulas of individual Suwannee River fulvic acids from
ultrahigh resolution electrospray ionization Fourier transform ion
cyclotron resonance mass spectra[J]. Analytical chemistry, 2003, 75
(6): 1 275-1 284.
[4] Davies H. A role for “omics” technologies in food safety
assessment[J]. Food Control, 2010, 21(12): 1 601-1 610.
[5] 宋锦玉, 成 立. 石油组学技术及其动向[J]. 当代化工, 2014(8):
1 498-1 501.
[6] 史 权, 赵锁奇, 徐春明, 等. 傅立叶变换离子回旋共振质谱仪在
石油组成分析中的应用[J]. 质谱学报, 2008, 29(6): 367-378.
[7] Smith D F. Petroleomics applications of Fourier transform ion
cyclotron resonance mass spectrometry.Crude oil and bitumen
analysis[M]. Pro Quest, 2007.
[8] 王光辉,熊少祥.傅里叶变换-离子回旋共振质谱[J]. 现代仪器,
2001(1):1-5.
[9] 季顺成, 邬国英. 核磁共振技术在石油加工中的应用[J]. 江苏石
油化工学院学报, 1997, 9(1): 55-60.
[10] Kotlyar L S, Morat C, Ripmeester J A. Structural analysis of
Athabasca maltenes fractions using distortionless enhancement by
polarization transfer (DEPT) related 13C nmr sequences[J]. Fuel,
1991, 70(1): 90-94.
[11] Simpson J H. Organic structure determination using 2-D NMR
spectroscopy: a problem-based approach[M]. Academic Press, 2011.
[12] New techniques in solid-state NMR[M]. Springer, 2005.
[13] Gorry P A. General least-squares smoothing and differentiation by
the convolution (Savitzky-Golay) method[J]. Analytical Chemistry,
1990, 62(6): 570-573.
[14] 高荣强, 范世福. 现代近红外光谱分析技术的原理及应用[J]. 分
析仪器, 2002, 3(9): 12.
[15] Khanmohammadi M, Garmarudi A B, Garmarudi A B, et al.
Characterization of petroleum-based products by infrared spectroscopy
and chemometrics[J]. TrAC Trends in Analytical Chemistry, 2012,
35: 135-149.
[16] 付海燕. 化学模式识别和多维校正方法及其在复杂体系分析中
的应用研究[D]. 湖南大学, 2010.
[17] Xia J F, Liang Q L, Hu P, et al. Recent trends in strategies and
methodologies for metabonomics[J]. Chinese Journal of Analytical
Chemistry, 2009, 37(1): 136-143.
[18] Hughey C A, Rodgers R P, Marshall A G, et al. Acidic and neutral
polar NSO compounds in Smackover oils of different thermal
maturity revealed by electrospray high field Fourier transform ion
cyclotron resonance mass spectrometry[J]. Organic geochemistry,
2004, 35(7): 863-880.
[19] Kim S, Stanford L A, Rodgers R P, et al. Microbial alteration of the
acidic and neutral polar NSO compounds revealed by Fourier
transform ion cyclotron resonance mass spectrometry[J]. Organic
geochemistry, 2005, 36(8): 1117-1134.
[20] Hughey C A, Galasso S A, Zumberge J E. Detailed compositional
comparison of acidic NSO compounds in biodegraded reservoir and
surface crude oils by negative ion electrospray Fourier transform ion
cyclotron resonance mass spectrometry[J]. Fuel, 2007, 86(5):
758-768.
[21] European Committee for Standardization. Oil spill identification
Waterborne petroleum and petroleum products.Analytical
methodology and interpretationofresults:BP,CEN/TR 15522-2:
2006[P].2008-03-31.
[22] Gaines R B, Hall G J, Frysinger G S, et al. Chemometric
determination of target compounds used to fingerprint unweathered
diesel fuels[J]. Environmental Forensics, 2006, 7(1): 77-87.
[23] 徐恒振, 周传光. 溢油指示物 (指标) 的 HPLC 模糊最大矩阵元
研究[J]. 海洋环境科学, 2000, 19(1): 11-14.
[24] P De Peinder, T Visser, D D Petrauskas, et al. Energy Fuel[J].
2009,23:2 164–2 168.
[25] De Peinder P, Visser T, Petrauskas D D, et al. Prediction of
long-residue properties of potential blends from mathematically
mixed infrared spectra of pure crude oils by partial least-squares
regression models[J]. Energy & Fuels, 2009, 23(4): 2 164-2 168. |