| [1] Liu G, Hoivik N, Wang K, et al. Engineering TiO2 nanomaterials for CO2 conversion/solar fuels [J]. Solar Energy Materials and Solar Cells, 2012, 105 : 53-68.
[2] Fan W, Zhang Q, Wang Y. Semiconductor-based nanocomposites for photocatalytic H2 production and CO2 conversion [J]. Physical Chemistry Chemical Physics, 2013, 15 (8) : 2 632-2 649.
[3] 王 超,陈 达,刘 姝,等. TiO2光催化还原CO2研究进展[J].材料导报A:综述篇,2011, 25(4): 38-46.
[4] Jeyalakshmi V, Mahalakshmy R, Krishnamurthy K R, et al. Photocatalytic reduction of carbon dioxide by water: A step towards sustainable fuels and chemicals[C]. Materials Science Forum, Trans Tech Publications, 2012.
[5] Habisreutinger S N, Schmidt-Mende L, Stolarczyk J K. Photocatalytic reduction of CO2 on TiO2 and other semiconductors[J]. Angewandte Chemie International Edition, 2013, 52 (29) : 7 372-7 408.
[6] Mao J, Li K, Peng T, Recent advances in the photocatalytic CO2 reduction over semiconductors[J] .Catalysis Science & Technology, 2013, 3 (10) : 2 481-2 498.
[7] Fan J, Liu E-Z, Tian L, et al. Study on Synergistic Effect of N and Ni2+ on Nano Titania in Photo catalytic Reduction of CO2[J], Journal of Environmental Engineering, 2010, 137 : 171-176.
[8] Koci K, Obalova L, Lancy Z, Photo catalytic reduction of CO2 over TiO2 based Catalysts [J], Chemical Papers, 2008, 62 (1) :1-9.
[9] Mizuno T, Adachi K, Ohta K, et al. Effect of CO2 pressure on photocatalytic reduction of CO2 using TiO2 in aqueous solutions [J]. Journal of Photochemistry and Photobiology A: Chemistry, 1996, 98(1-2):87-90.
[10] Kaneco S, Shimizu Y, Ohta K, et al. Photocatalytic reduction of high pressure carbon dioxide using TiO2 powders with a positive hole scavenger [J]. Journal of Photochemistry and Photobiology A: Chemistry, 1998, 115 (3) : 223-226.
[11] Tseng I H, Wu J C S. Chemical states of metal-loaded titania in the photoreduction of CO2 [J]. Catalysis Today, 2004, 97 (2) : 113-119.
[12] Yanagida S, Kanemoto M, Ishihara K, et al. Semiconductor Photocatalysis. Part 22. Visible-Light Induced Photoreduction of CO2 with CdS Nanocrystallites. Importance of the Morphology and Surface Structures Controlled through Solvation by N, N-Dimethylformamide [J]. Bulletin of the Chemical Society of Japan, 1997, 70 (9) : 2 063-2 070.
[13] Li X, Chen J, Li H, et al. Photoreduction of CO2 to methanol over Bi2S3/CdS photocatalyst under visible light irradiation [J]. Journal of Natural Gas Chemistry, 2011, 20 (4) : 413-417
[14] Liu J Y, Garg B, Ling Y C. CuxAgyInzZnkSm solid solutions customized with RuO2 or Rh1.32Cr0.66O3 co-catalyst display visible light-driven catalytic activity for CO2 reduction to CH3OH [J]. Green Chemistry, 2011, 13 (8 ): 2 029-2 031.
[15] Arai T, Tajima S, Sato S, et al. Selective CO2 conversion to formate in water using a CZTS photocathode modified with a ruthenium complex polymer [J]. Chemical Communications, 2011, 47 (47) : 12 664-12 666.
[16] Xie Y P, Liu G, Yin L, et al. Crystal facet-dependent photocatalytic oxidation and reduction reactivity of monoclinic WO3 for solar energy conversion [J]. Journal of Materials Chemistry, 2012, 22 (14):6 746-6 751.
[17] Chen X, Zhou Y, Liu Q, et al. Ultrathin, single-crystal WO3 nanosheets by two-dimensional oriented attachment toward enhanced photocatalystic reduction of CO2 into hydrocarbon fuels under visible light [J]. ACS applied materials & interfaces, 2012, 4 (7) : 3 372-3 377
[18] Liu Y, Huang B, Dai Y, et al. Selective ethanol formation from photocatalytic reduction of carbon dioxide in water with BiVO4 photocatalyst [J]. Catalysis Communications, 2009, 11(3): 210-213.
[19] Cheng H, Huang B, Liu Y, et al. An anion exchange approach to Bi2WO6 hollow microspheres with efficient visible light photocatalytic reduction of CO2 to methanol [J]. Chemical
Communications, 2012, 48 (78) : 9 729-9 731.
[20] Zhou Y, Tian Z, Zhao Z, et al. High-yield synthesis of ultrathin and uniform Bi2WO6 square nanoplates benefitting from photocatalytic reduction of CO2 into renewable hydrocarbon fuel under visible light[J]. ACS applied materials & interfaces, 2011, 3 (9) : 3 594-3 601.
[21] Yu J, Wang S, Low J, et al. Enhanced photocatalytic performance of direct Z-scheme gC3N4-TiO2 photocatalysts for the decomposition of formaldehyde in air [J]. Physical Chemistry Chemical Physics, 2013,15 (39) : 16 883-16 890.
[22] Mao J, Peng T, Zhang X, et al. Effect of graphitic carbon nitride microstructures on the activity and selectivity of photocatalytic CO2 reduction under visible light [J]. Catalysis Science & Technology, 2013, 3 (5) : 1 253-1 260.
[23] Yu J, Wang K, Xiao W, et al. Photocatalytic reduction of CO2 into hydrocarbon solar fuels over gC3N4-Pt nanocomposite photocatalysts [J]. Physical Chemistry Chemical Physics, 2014, 16 (23) : 11 492-11 501.
[24] Ohno T, Murakami N, Koyanagi T, et al. Photocatalytic reduction of CO2 over a hybrid photocatalyst composed of WO3 and graphitic carbon nitride (gC3N4) under visible light[J]. Journal of CO2 Utilization, 2014, (6): 17-25.
[25] Yu J, Jin J, Cheng B, et al. A noble metal-free reduced graphene oxide-CdS nanorod composite for the enhanced visible-light photocatalytic reduction of CO2 to solar fuel [J]. Journal of Materials Chemistry A, 2014, 2 (10): 3 407-3 416.
[26] Hsu H C, Shown I, Wei H Y, et al. Graphene oxide as a promising photocatalyst for CO2 to methanol conversion [J]. Nanoscale, 2013, 5(1): 262-268.
[27] Shown I, Hsu H C, Chang Y C, et al. Highly efficient visible light photocatalytic reduction of CO2 to hydrocarbon fuels by Cu-nanoparticle decorated graphene oxide [J]. Nano letters, 2014, 14 (11): 6 097-6 103.
[28] 高梦语, 姜东, 孙德魁, 等. Ag/N-TiO2/SBA-15 光催化剂的制备及其可见光催化还原CO2 [J]. 化学学报, 2014, 72 (10): 1 092-1 098.
[29] Wang Y, Wang F, Chen Y, et al. Enhanced photocatalytic performance of ordered mesoporous Fe-doped CeO2 catalysts for the reduction of CO2 with H2O under simulated solar irradiation [J]. Applied Catalysis B: Environmental, 2014, 147: 602-609.
[30] Asi M A, He C, Su M, et al. Photocatalytic reduction of CO2 to hydrocarbons using AgBr/TiO2 nanocomposites under visible light [J]. Catalysis today, 2011, 175 (1) : 256-263. |